

Technology Compendium for Energy Efficiency and Renewable Energy Opportunities in Dairy Sector

Haryana Dairy Cluster

September 2020

Disclaimer

This document is prepared to provide overall guidance for conserving energy and costs. It is an output of a research exercise undertaken by Confederation of Indian Industry (CII) supported by the United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for the benefit of the *Dairy Industry located at Haryana, India*. The contents and views expressed in this document are those of the contributors and do not necessarily reflect the views of CII, BEE or UNIDO, its Secretariat, its Offices in India and elsewhere, or any of its Member States.

Promoting Energy Efficiency and Renewable Energy in Selected MSME Clusters in India

(A GEF funded project being jointly implemented by UNIDO & BEE)

Compendium of

Energy Efficiency and Renewable Energy Technologies for Haryana Dairy Cluster

September 2020

Developed under the assignment

Scaling up and expanding of project activities in MSME Clusters

Prepared by

Confederation of Indian Industry

125 Years - Since 1895

Cll Sohrabji Godrej Green Business Centre Survey No.64, Kothaguda Post, R R District, Hyderabad, Telangana 500084 INDIA

Acknowledgement

Acknowledgement

This assignment was undertaken by Confederation of Indian Industry (CII) as a project management consultant under the Global Environment Facility (GEF) funded project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India.' The Technology Compendiums are meant to serve as an informative guide to the clusters that the project is currently working in and also to the other potential clusters across the country.

CII would like to express its gratitude to United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for having provided the guidance in the completion of this assignment.

CII would like to specially thank all the professionals for their valuable contributions in finalizing the different technology compendiums developed under the assignment. CII is grateful to Mr. Abhay Bakre, Director General, BEE, Mr R K Rai, Secretary, BEE and Mr. Milind Deore, Director, BEE for their support and guidance during the assignment. CII would like to express its appreciation to Mr. Sanjaya Shrestha, Industrial Development Officer, Energy Systems and Infrastructure Division, UNIDO, for his support in execution of the assignment. We would like to thank Mr. Suresh Kennit, National Project Manager, and the entire Project Management Unit (PMU) for their timely coordination and valuable inputs during the assignment.

CII would like to take this opportunity to thank all the dairies, local service providers and equipment suppliers for their active involvement and valuable inputs in the development of the technology compendiums. We extend our appreciation to the different Industry Associations in the clusters for their continuous support and motivation throughout the assignment.

Finally, we would like to thank each and every personnel from CII team who have been actively involved at every step of the compilation and whose tireless and valuable efforts made this publication possible.

CII Team

Table of Contents

List of Figures	
List of Tables10	
List of Abbreviations13	
Unit of Measurements16	
About the Project	
About the Technology Compendium	
Executive Summary	
1. Indian Dairy Industry	
1.1 Background	
1.2 Dairy Sector Growth Prospects	
1.3 Haryana Dairy Cluster	
2. Dairy Process	
2.1 Dairy Sector Overview	
2.2 Overview: Process Flow in Dairy Plant	
2.3 Energy Consumption in Dairy Plants	
2.4 Technology Status in Haryana Dairy Cluster	
3. Energy Efficiency Opportunities	
3.1 Energy Efficiency in Dairy	
3.2 Energy Efficiency Measures	
3.2.1 Energy Efficiency in Steam Systems	
3.2.2 Energy Efficiency in Refrigeration Systems	
3.2.3 Energy Efficiency in Process	
3.2.4 Energy Efficiency in Utilities	
3.2.5 Best Practices and Key Indicators for Energy Efficiency	
4. Energy Efficient Technologies – Case Studies	
4.1 Case Studies in Steam Generation and Distribution57	
4.1.1 Condensate Recovery System57	
4.1.2 Steam Operated Pumping Traps62	
4.2 Case Studies in Refrigeration Systems	
4.2.1 Installation of screw refrigeration compressor	
4.2.2 VFD in Chiller Compressor	
4.2.3 Evaporative Condenser	
4.2.4 Falling Film Chiller (FFC)	
4.2.5 Energy efficient submersible agitators for IBT	
4.2.6 Desuperheater for Compressors	
4.2.7 kVAr Energy Compensator for Chiller Compressor	
4.2.8 VFD for chilled water pumps	

4.2.9 Direct Cooling Method – IBT	
4.2.10 Thermal Energy Storage for BMC	
4.2.11 BMC Remote Monitoring System	108
4.3 Case Studies – Utilities	113
4.3.1 VFD for air Compressor	113
4.3.2 Energy Efficient Pumps	
4.3.3 Package Type Biogas Reactor	120
4.3.4 Methane Capture from dairy effluents	124
4.4 Case Studies – Process Area	130
4.4.1 Installation of High Regenerating Efficiency Pasteurizer	130
4.5 Case Studies - Renewable Energy	134
4.5.1 Solar rooftop system	
4.5.2 Solar Thermal System	139
4.5.3 Solar-Wind Hybrid system	145
5. Conclusion	149
Bibliography	

List of Figures

Figure 1: Milk Production and Per Capita Availability in Country (NDDB, Milk Production in India, 2019)
Figure 2: Milk Production – state wise
Figure 3: Milk production in Haryana (Last 5 years)
Figure 4: Dairy Institutional Structure – Haryana
Figure 5: Milk Processing Value Chain
Figure 6: Milk Processing Flow
Figure 7: Milk Receiving
Figure 8: Pasteurization process
Figure 9: Milk Standardization Process
Figure 10: Homogenization Process
Figure 11: Auto CIP – (Source Alfa Laval)
Figure 12: Milk Packaging
Figure 13: Energy Cost – Breakup (Dairy Plant)
Figure 14: Energy Balance of a Dairy Plant
Figure 15: Energy Efficiency Approach – Dairy Industry
Figure 16: Dairy - Energy Consumption Overview
Figure 17: Typical condensate recovery system
Figure 18: Heat content in condensate 58
Figure 19: Steam Loss Chart
Figure 20: IBT temperature profile
Figure 21: Compressor Suction Pressure
Figure 22: Existing Condenser System
Figure 23: Evaporative Condenser
Figure 24: Falling film chiller
Figure 25: Submersible agitators
Figure 26: Vapor Compression Cycle
Figure 27: WHR from chiller compressor
Figure 28: kVAr energy compensator
Figure 29: Existing pumping layout
Figure 30: Typical operating efficiency analysis for different seasons
Figure 31: Post Implementation – Direct Cooling Method
Figure 32: Dairy Value Chain102
Figure 33: Schematic layout for Instant Milk Choller104
Figure 34: Cooling time with and without instant milk Chiller104
Figure 35: MBRT before installation of remote monitoring system109
Figure 36: Dashboard list of BMCs

Figure 37: Chilling graph
Figure 38: MBRT after installation of remote monitoring system
Figure 39 Capacity control of compressor 113
Figure 40: Chilled Water Pumping Systems116
Figure 41: Pump Characteristic Curve116
Figure 42: Fabric used for biogas120
Figure 43: Layout of FOV Biogas Technology121
Figure 44: ETP Treatment Process
Figure 45: Biogas Generation and Utilization Process126
Figure 46: Pasteurization process130
Figure 47: Solar Irradiance134
Figure 48: Average Solar Irradiance140
Figure 49: Evacuated Tube140
Figure 50: Solar wind hybrid system145
Figure 51: Hybrid mill connected to supply146
Figure 52: Hybrid mill connected to loads146
Figure 53: Unit Abatement Cost- Energy Efficient Technologies

List of Tables

Table 1: Energy Efficiency Technologies – Attractiveness and Investment	24
Table 2: Dairy Infrastructure Growth	28
Table 3: District Milk Unions under HDDCF	30
Table 4: Cooperatives under Amul (Haryana) ²	.31
Table 5: Energy Consumption Overview for Dairy Plant	38
Table 6: Technology Status – Haryana Dairy Cluster	40
Table 7: Energy Efficiency Measures in Steam Generation and Distribution Systems	45
Table 8: Energy Efficiency in Refrigeration Systems	46
Table 9: Energy Efficiency in Process Areas	47
Table 10: Energy Efficiency in Utilities	48
Table 11: Best Practices for Energy Efficient Operations	50
Table 12: Energy – Key Performance Indicators	52
Table 13: Case Studies for Haryana Dairy Sector	•55
Table 14: Cost Benefit Analysis – Condensate Recovery Systems	59
Table 15: Reference Implementation – Condensate Recovery Systems	60
Table 16: Vendor Details – Condensate Recovery Systems	.61
Table 17: Boiler details	62
Table 18: Cost Benefit Analysis – Installation Steam Operated Pumping Traps	63
Table 19: Vendor Details – Steam Operated Pumping Traps	64
Table 20: Operating Parameters of compressors	65
Table 21: Comparison between screw and reciprocating compressor	66
Table 22: Cost Benefit Analysis – Installation of Screw Compressor	67
Table 23: Vendor details – Screw Compressor (Refrigeration)	68
Table 24: Operating Parameters of compressors	69
Table 25: Cost Benefit Analysis – VFD for Refrigeration Compressor	
Table 26: Vendor details – VFD for Refrigeration Compressor	72
Table 27: Existing Parameter – Refrigeration Systems	•74
Table 28: Cost Benefit Analysis – Evaporative Condenser	•75
Table 29: Vendor Details – Evaporative Condenser	•77
Table 30: Chiller compressor performance	78
Table 31: Falling Film Chiller vs Plate Heat Exchanger	80
Table 32: Cost Benefit Analysis – Falling Film Chiller	80
Table 33: Reference Plant Implementation – Falling Film Chiller	.81
Table 34: Vendor Details – Falling Film Chiller	82
Table 35: Cost Benefit Analysis – EE agitator for IBT	84
Table 36: Reference implementation: Energy efficient agitators	85
Table 37: Vendor Details – EE agitator	85

Table 38: Key technical parameters of Desuperheater	87
Table 39: Cost Benefit Analysis – Installation of Desuperheater	88
Table 40: Reference Plant Implementation - De-superheater	
Table 41: Vendor details – De-superheater for Compressors	89
Table 42: Electrical parameters	90
Table 43: Cost Benefit Analysis – kVAr Energy Compensator	91
Table 44: Reference Plant Implementation – kVAr Compensator	92
Table 45: Vendor Details – kVAr Energy Compensator	93
Table 46: Cost Benefit Analysis – VFD for chilled water pump	95
Table 47: Reference Plant Implementation – VFD for chilled water pump	96
Table 48: Vendor Details – VFD for chilled water pump	97
Table 49: Cost Benefit Analysis – Direct Cooling in IBT	100
Table 50: Vendor details – Direct Cooling in IBT	101
Table 51: Bacterial growth factor with milk temperature	102
Table 52: Cost Benefit Analysis – Instant Milk Cooler	105
Table 53: Reference Plant Implementation – Instant Milk Chiller	106
Table 54: Vendor Details – Instant Milk Cooler	
Table 55: Milk rating as per MBRT	108
Table 56: Cost benefit analysis - BMC remote monitoring	112
Table 57: Vendor details - BMC remote monitoring system	112
Table 58: Plant compressor loading pattern	113
Table 59: Cost Benefit Analysis- VFD for Air Compressor	114
Table 60: Vendor Details – VFD for Air Compressor	115
Table 61: Cost Benefit Analysis – Energy Efficient Pump	117
Table 62: Reference Plant Installation: Energy Efficient Pump Sets	118
Table 63: Cost Benefit Analysis – Biogas Reactor Systems	122
Table 64: Reference Plant Implementation – Biogas Reactor	123
Table 65: Effluent Characteristics	124
Table 66: Cost Benefit Analysis – Biogas Power Generator	127
Table 67: Reference Plant Implementation – Biogas Utilization	128
Table 68: Vendor Details – Biogas Utilization – Power and CNG	129
Table 69: Comparison sheet	131
Table 70: Cost Benefit Analysis – High regenerative efficiency pasteurizer	132
Table 71: Vendor details - High regenerative pasteurizer	133
Table 72: Site Specification – for Solar PV	134
Table 73: Features/requirements for Grid Connected Solar PV Systems (Rooftop)	135
Table 74: Cost Benefit Analysis – Solar PV Systems	137
Table 75: Reference Plant Implementation – Solar PV Systems	137
Table 76: Vendor Details – Solar PV	138
Table 77: Boiler Details	139

Table 78: Site specifications	139
Table 79: Water Quality Requirement for Solar Thermal	141
Table 80: Cost Benefit Analysis – Solar Thermal Systems	142
Table 81: Vendor Details – Solar Thermal Systems	144
Table 82: Cost Benefit Analysis – Solar Wind Hybrid Systems	147
Table 83: Vendor Details – Solar-Wind Hybrid Systems	148
Table 84: Summary of Energy conservation measures	150

List of Abbreviations

AHU	Air Handling Unit
APFC	Automatic Power Factor Controller
AC	Alternating Current
BEE	Bureau of Energy Efficiency
BEP	Best Efficiency Point
BLDC	Brushless Direct Current
BMC	Bulk Milk Cooler
BOD	Biological Oxygen Demand
CAGR	Compound Annual Growth Rate
CFD	Computational Fluid Dynamics
CHW	Chilled Water
CII	Confederation of Indian Industry
CIP	Cleaning in Place
COD	Chemical Oxygen Demand
СОР	Coefficient of Performance
DAHD	Department of Animal Husbandry and Dairying
DC	Direct Current
DG	Diesel Generator
EHP	Electric Heat Pump
ETP	Effluent Treatment Plant
FAO	Food and Agricultural Organization
FCU	Fan Coil Unit
FFC	Falling Film Chiller
GCV	Gross Calorific Value
GDP	Gross Domestic Product
GEF	Global Environmental Facility
GHG	Green House Gas
HDDCF	Haryana Dairy Development Cooperative Federation

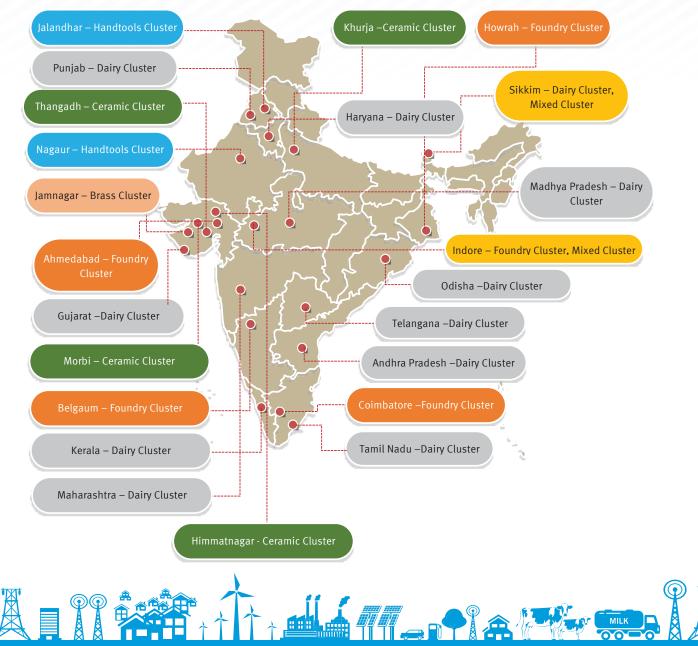
HSD	High Speed Diesel
HTST	High Temperature Short Time
HVAC	Heating Ventilation and Air Conditioning
IBT	Ice Bank Tank
IFC	Intelligent Flow Controller
IoT	Internet of Things
IRR	Internal Rate of Return
ISO	International organization for standardization
LED	Light Emitting Diode
LP	Low Pressure
LSP	Local Service Provider
MBR	Membrane Bio Reactor
MBRT	Methylene Blue Dye Reduction Test
MCC	Milk Chilling Centre
MPPT	Maximum Power Point Tracker
MSME	Micro, Small and Medium Enterprises
NB	Nominal Bore
NDDB	National Dairy Development Board
NG	Natural Gas
NPV	Net Present Value
OEM	Original Equipment Manufacturer
PCU	Power Conditioning Unit
PF	Power Factor
PHE	Plate Heat Exchanger
PID	Proportional Integral Derivative
PNG	Piped Natural Gas
PRV	Pressure Reducing Valve
PV	Photovoltaic
RE	Renewable Energy
SEC	Specific Energy Consumption
SNF	Solid No Fat

SOPT	Steam Operated Pumping Trap
ТСV	Temperature Control Valve
TDS	Total Dissolved Salts
TOE	Tons of Oil Equivalent
UASB	Up flow Anaerobic Sludge Blanket
UHT	Ultra-High Temperature
UNIDO	United Nations Industrial Development Organization
UOM	Unit of Measurement
VFD	Variable Frequency Drive
WHR	Waste Heat Recovery

Unit of Measurements

CFM	Cubic Feet Minute
gm	Grams
HP	Horse Power
kg	Kilogram
kg/cm ²	kilo gram per square centimetre
kJ	Kilo Joule
kl	Kilo Litre
kl/hr	Kilo Litre per Hour
km	Kilometre
kVAr	Reactive Power
kW	Kilo Watt
kWh	Kilo Watt Hour
kWp	Kilowatt Peak
LLPD	Lakh Litre per Day
°C	Degree Celsius
ppm	parts per million
psi	Pounds per Square Inch
Rs	Rupees
TCO ₂	Tons of Carbon dioxide
TDS	Total Dissolved Solids
THD	Total Harmonic Distortion
TOE	Tons of Oil Equivalent
TPD	Tons Per Day
ТРН	Tons per Hour
TR	Tons of Refrigeration

This Page Intentionally Left Blank


About Project & Technology Compendium

About the Project

The United Nations Industrial Development Organization (UNIDO), in collaboration with the Bureau of Energy Efficiency (BEE), a statutory body under the Ministry of Power, Government of India, is executing a Global Environment Facility (GEF) funded national project titled 'Promoting energy efficiency and renewable energy in selected MSME clusters in India'. The project was operational in 12 MSME clusters across India in five sectors, respectively: Brass (Jamnagar); Ceramics (Khurja, Thangadh and Morbi); Dairy (Gujarat, Sikkim and Kerala); Foundry (Belgaum, Coimbatore and Indore); Hand Tools (Jalandhar and Nagaur). The Project has now scaled-up and expanded its activities to 11 new clusters, namely in Dairy (Tamil Nadu, Odisha, Madhya Pradesh, Andhra Pradesh & Telangana, Haryana, Maharashtra & Punjab), Foundry (Ahmedabad & Howrah), Ceramic (Himmatnagar) Mixed Cluster (Indore & Sikkim) in order to reach out to MSME's at national level.

This project so far has supported 303 MSME units in implementing 603 Energy conservation Measures and thus resulted in reduction of about 10,850 TOE energy consumption and avoided 62,868 metric tons of CO2 emissions as on date.

The key components of the project include:

- Increasing capacity of suppliers of EE/RE product suppliers / service providers / finance providers
- Increasing the level of end user demand and implementation of EE and RE technologies and practices by MSMEs.
- Scaling up of the project to more clusters across India.
- Strengthening policy, institutional and decision-making frameworks.
- Significant progress has been made in the project and it is now proposed to scale up and expand. The activities envisaged under the scaling up phase of the project include:
 - ♦ Establishment of field level Project Management Cell (PMC)
 - ♦ Organizing cluster level awareness program and identification of potential MSME enterprises
 - ♦ Development of cluster specific EE and RE based technology compendiums
 - Providing implementation support and other related activities to the identified enterprises

About the Technology Compendium

The Dairy industry in India today face challenges and opportunities resulting from rising energy cost, environmental concerns and competitiveness. Dairy processing in dairy value chain consumes more energy than any other operation across the value chain. amount of energy as energy costs. The dairy uses energy for cooling, heating and in operation of various equipment such as refrigeration, boilers, compressors, etc. Over the years, there has been significant technology improvement in process and utilities area and dairies have been able to improve the energy efficiency in their operations. However, still various opportunities exist for dairies to improve their energy efficiency and to be competitive and have environment friendly operations, the energy efficiency is critical to achieve these goals.

The technology compendium is prepared with objective to accelerate the adoption of energy efficient technologies and practices in dairy industry and it focuses on dairy equipment upgrades, new technologies and practices for improving energy efficiency. The technologies case studies have been included in the compendium provides all the necessary information to enable dairies to refer and implement it in their operations. The case studies are supported with technology background, baseline scenario, merits, challenges, technical feasibility, financial feasibility and technology provider details. The opportunities presented in this compendium is developed for dairy processing unit but may be applicable across the dairy value chain. The energy efficiency measures included in the report covers more than 90% of energy consumption in a dairy unit.

- The objective of this compendium is to act as a catalyst to facilitate dairies towards continuously improving the energy performance, thereby achieving world class levels (with thrust on energy & environmental management)
- The compendium includes general energy efficiency options as well specific case studies on applicable technology upgradation project which can result in significant energy efficiency improvements
- The suggested best practices may be considered for implementation only after detailed evaluation and fine-tuning requirements of existing units
- In the wide spectrum of technologies and equipment applicable for dairy sector for energy efficiency, it is be difficult to include all the energy conservation aspects in this manual. However, an attempt has been made to include more common implementable technologies across all the dairy units
- The user of the compendium has to fine tune the energy efficiency measures suggested in the compendium to their specific plant requirements, to achieve maximum benefits
- The technologies collated in the compendium may not be necessarily be the ultimate solution as the energy efficiency through technology upgradation is continuous process and will eventually move towards better efficiency with advancement in technology
- This compendium is first version and new energy efficient technologies would be included in subsequent versions

Executive Summary

Executive Summary

The United Nations Industrial Development Organization (UNIDO), in collaboration with the Bureau of Energy Efficiency (BEE), a statutory body under the Ministry of Power, Government of India, is executing a Global Environment Facility (GEF) funded national project called 'Promoting energy efficiency and renewable energy in selected MSME clusters in India'. The project execution is planned in multiple phases.

The aim of the Phase-I of the project was to develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in the above mentioned (12) selected energy-intensive MSME clusters in India, with feasibility for expansion to more clusters. Phase-II of the project is to scale up and expand the project activities to a greater number of enterprises in existing clusters, as well as 11 new clusters, for better implementation of energy efficiency technologies and practices.

Efficient use of energy in any facility is invariably the most important strategic area for manageability of cost or potential cost savings. Awareness of the personnel, especially operators in the facility becomes a significant factor for the proper implementation of energy conservation initiatives. With this background, this Technology Compendium has been prepared, which comprises of various technologies and best practices to save energy.

The information in this compendium is intended to help the dairy managers in the Haryana Dairy industry to reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further analysis on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual dairy units. Additionally, this compendium shall also serve the purpose of tapping the opportunities to significantly reduce energy consumption. Further, this shall also serve as a guide for estimating the feasibility of energy saving project at the first place and ensure accelerated implementation.

The chapter 1 of the compendium provides and overview of Indian Dairy and Haryana Dairy Cluster. The chapter 2 focuses on brief overview of dairy process and energy consumption in dairy unit and also includes technology status/mapping of the dairy cluster.

The chapter 3 focuses on importance of energy efficiency in dairy industry and some of the common measures applicable in different sections of the dairy unit. The energy efficiency measures are included for more than 90% of energy consumption areas in a dairy plant such as refrigeration, steam systems, process, utilities and utilization of renewable energy. The chapter also includes some of the best practices and key indicators that the plant should follow and monitor to maintain the energy efficiency levels in different energy consuming areas.

The chapter 4 provides detailed case studies for some of high impact and implementable energy efficient technologies in dairy units. In this chapter, 20 case studies have been included in areas such as refrigeration, steam systems, utilities, renewable energy, etc. These technologies are described in detail such as baseline scenario, proposed scenario, merits,

demerits, etc. and wherever possible a case reference from a dairy who has implemented the technology has been included. In most of the examples, typical energy saving data, GHG emission reduction, investments, payback period, etc., have been highlighted. Energy saving potential in this sector is estimated to be about 10-15 percent without (or with marginal) investment, and an additional 15% with investment. High potential for improving energy efficiency in dairies exists in the areas of heating and cooling via adoption of technologies such as co-generation, Desuperheater, evaporative cooling systems, utilization of renewable energy, biomass fired boilers and increased automation.

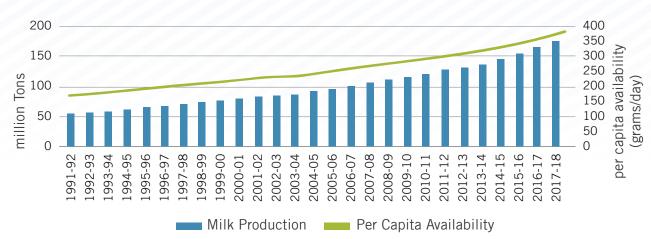
The following table summarizes list of technologies included in the compendium:

Sr. No	Technologies	Internal Rate of Return (IRR -%)	Payback (months)	INR Lakh/TOE
Steam Generation and Distribution				
1	Condensate Recovery System	143.6	10	0.13
2	Steam Operated Pumping Traps	128.76	12	0.37
	Refrigeration Systems	5		
3	Installation of Screw Refrigeration Compressor	44	41	2.2
4	Variable Frequency Drive (VFD) in Chiller Compressor	73.04	23	1.23
5	Evaporative Condenser	63.79	27	1.73
6	Falling Film Chiller	121.28	13	0.92
7	Energy Efficient Agitator for IBT	170.95	8	0.45
8	Desuperheater for Compressors	52.98	34	0.43
9	kVAr compensator for chiller compressor	83.57	20	1.05
10	VFD for chilled water pumps	4.64	6	0.24
11	Direct Cooling Method – Ice Bank Tank (IBT)	56.63	31	2.53
12	Thermal Energy Storage for Bulk Milk Coolers (BMC)	246.13	6	1.34
13	BMC Remote Monitoring system	-	-	-
Utilities				
14	VFD for Air Compressor	142.02	11	0.57
15	Energy Efficient Pumps	66.74	17	0.65
16	Package Type Biogas Reactor	62.31	27	1.05
17	Methane Capture from dairy effluents	71.44	24	1.47

Table 1: Energy Efficiency Technologies – Attractiveness and Investment

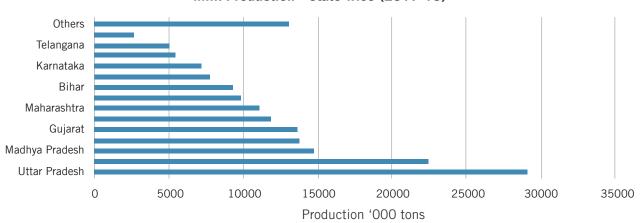
Sr. No	Technologies	Internal Rate of Return (IRR -%)	Payback (months)	INR Lakh/TOE		
	Process					
18	Installation of High Regenerative Efficiency Pasteurizer	176.3	11.0	0.20		
	Renewable Energy					
19	Solar rooftop system	19.81	84	5.54		
20	Solar Thermal System	48.24	37	0.12		
21	Solar Wind Hybrid	20.88	7	5.31		

The Haryana dairy industry should view this manual positively and utilise this opportunity to implement the best operating practices and energy saving ideas during design and operations stages and thus contributing in achieving world class energy efficiency standards for Haryana dairy cluster.



1. Indian Dairy Industry

1. Indian Dairy Industry


1.1 Background

India is the World's Largest milk producer and is responsible for 21% of global milk production. (FAO, 2019). The dairy sector in India has grown exponentially in last five decades and 'White Revolution' helped India from becoming milk deficit to milk surplus country today. In the year 1950, India's milk production was mere 17 million tons per year and it has increased to 176.5 million tons in year 2017-18 (NDDB, Milk Production in India, 2019). The dairy sector has grown at Compound Annual Growth Rate (CAGR) of 4.18% every year since 1990 and in the same duration, the per capita milk availability as improved from 178 grams/day to 375 grams/day in year 2017-18 (NDDB, Milk Production in India, 2019). Following graphs highlight the growth in milk production and per capita milk availability in the country.

Milk Production and Per Capita Availability

Among the various states in India, the top 5 largest milk producers are Uttar Pradesh, Rajasthan, Madhya Pradesh, Andhra Pradesh, and Gujarat and these 5 states represent 53% of milk production in India in 2017-18.

Milk Production - State wise (2017-18)

Figure 2: Milk Production – state wise

Figure 1: Milk Production and Per Capita Availability in Country (NDDB, Milk Production in India, 2019)

1.2 Dairy Sector Growth Prospects

The dairy sector has also played a critical role in socio-economic development of the country as it provides employment and entrepreneurship opportunity to millions of households in the country. The livestock, which is an important constituent within dairy sector is also important as it contributes to 67% of output value of livestock subsector under agriculture sector (DAHD, 2018).

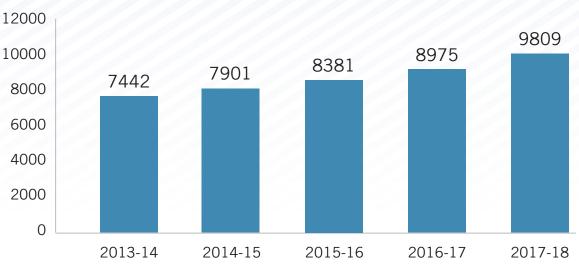
The key growth drivers for dairy sector are population growth, income growth and urbanization and it is expected that these factors will drive the India's milk consumption to new 300 million tons by 2022-23 and will also result in increased per capita availability of milk to 592 grams/day (DAHD, 2018). Thus, indicating there is significant growth potential in dairy sector in coming years. The Government of India in 2018 announced National Action for Dairy Development to tap the growth opportunity by addressing the gaps in infrastructure required to handle and process the milk to not only meet the growing demand but also doubling the farmers income.

To tap the growth opportunity, it is important to have sufficient dairy infrastructure such as chilling centers, milk processing facilities along with drying and value-added products. As highlighted in the National Action Plan for Dairy Development, there is an urgent need to modernize the existing infrastructure and also development of new infrastructure in dairy sector to achieve the target of 300 million tons of production and processing in the country in 2023-24. The following table highlights the existing capacity of dairy infrastructure and targets envisaged as per the plan in year 2023-24.

Dairy Infrastructure Growth				
Sr. No	Particulars	UOM	2015-16	2023-24
1	Processing Capacity	LLPD	1420	5345
2	Chilling Capacity	LLPD	767	4260
3	Value added products	TPD	7918	20534
4	Milk Power	TPD	2961	8401
5	Cattle feed plant	TPD	15562	21300

Table 2: Dairy Infrastructure Growth

To meet the gap in the infrastructure, it is estimated that Rs. 1,27,455 crores of investment are required by cooperatives, producers and private sector and among these the major investment would be driven by milk processing and milk chilling infrastructures. (DAHD, 2018).


Thus, the dairy sector is bound to have an accelerated growth in coming years and would contribute significantly in socio-economic development of the country and most important the rural India.

1.3 Haryana Dairy Cluster

Haryana is one of the most progressive states of Republic of India. In the domain of dairy development, it is well known for its productive milch cattle particularly the 'Murrah' Buffaloes and Haryana Cows. The economy of the state is predominantly based on agriculture. People rear and breed cattle as a subsidairy occupation. The state is one among the largest milk producer in the country and in 2017-18 the state produced 9.81 million tons of milk and it was responsible for 5.56% of country's production (NDDB, Milk Production in India, 2019).

The overall growth of the milk production in the state over the past 5 years is as shown in the figure below,

Milk Production in Haryana ('000 tonnes)

The dairy cluster in Haryana is a combination of both public & private units. Of the total production, Haryana Dairy Development Cooperative Federation (HDDCF) accounts for nearly 90% of the total milk production

The HDDCF registered under Haryana Co-operative Societies Act came into existence on April 1,1977. Its authorized share capital is Rs.4000 lacs. It was established with the primary aim to promote economic interests of the milk producers of Haryana particularly those belonging to weaker sections of the village community by procuring and processing milk into milk products and marketing thereof by itself or through its unions. In furtherance of the above objects, the Federation undertakes various activities for sales promotion of VITA Brand for the Milk Unions. It also extends technical guidance to the Unions in all spheres of personnel, technical, marketing and financial management as well as makes them quality conscious, through use of modern methods of laboratory testing of various products¹.

The operation of the federation is based on the Anand Pattern. Dairy Cooperatives in Haryana works as per the following three tier system: - i) Milk Producers Cooperative Societies at village level ii) Milk Unions at District level iii) State Dairy Federation at state level

¹ https://www.vitaindia.org.in/introduction

Figure 3: Milk production in Haryana (Last 5 years)

Figure 4: Dairy Institutional Structure – Haryana

Under the Federation, there are six milk unions in operation. The following table shows the list of district milk unions, their production capacities & the various milk products they produce

Sr. No	Milk Plant/ Union	Products	Capacity (LLPD)
1	Jind	Liquid Milk, Ghee, Milk Powder, Paneer, Dahi, Lassi, Kaju Pinni Jaljeera, Mango Drink.	1.5
2	Ambala	Liquid Milk, Ghee, Paneer, Dahi, Lassi, Sterilized Flavored Milk, Kheer, Milk Cake, Ice Cream.	1.4
3	Rohtak	Liquid Milk, Ghee, Paneer, Dahl, Lassi, Table Butter, Sterilized Flavored Milk.	4
4	Ballabgarh	Liquid Milk, Ghee, Paneer, Dahi, Lassi.	1.25
5	Sirsa	Liquid Milk, Ghee, Milk Powder, Paneer, Dahi, Lassi, Kaju Pinni.	1.1
6	Kurukshetra	A2 Desi Cow Liquid Milk	0.2
		Total	9.45

Table 3: District Milk Unions under HDDCF

Apart from the dairies under HDDCF, three other cooperatives of Amul also operate in Haryana to serve the markets of Delhi – NCR. These include,

- Banaskantha Dist Coop Milk Producers' Union Ltd (Banas Dairy)
- Sabarkantha Dist Coop Milk Producers' Union Ltd (Sabar Dairy)
- Mehsana Dist Coop Milk Producers' Union Ltd (Dudhmansagar Dairy)

The table below shows their production capacities,

Table (.	Cooporativos	under Amul	(Harvana)2
Tuble 4:	Cooperatives	under Annul	(пигуини)

Sr. No	Milk Plant/Union	Products	Capacity (LLPD)
1	Banas Dairy	Liquid Milk, Dahi, Butter Milk, Lassi	10
2	Sabar Dairy	Liquid Milk, Dahi, Butter Milk, Lassi, Yoghurt	5
3	Dudhmanasagar Dairy	UHT Milk, Ice Cream, Dahi	9.61
		Total	24.61

² Data taken from respective websites of Amul plants

2. Dairy Process

2. Dairy Process

2.1 Dairy Sector Overview

Milk is one of the staple foods for India and is highly nutritious but also has short shelf life and thus requires special handling and processing to deliver it to the end consumers. As milk provide excellent medium for the growth of microorganisms and it can cause spoilage and health impact on consumers, thus special treatment and processing are undertaken to preserve it nutritious value and also at the same time extend its shelf life. The following figure indicates the value chain of dairy industry, from raw milk to final products delivered to the consumers.

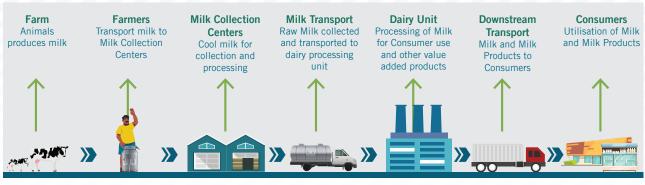


Figure 5: Milk Processing Value Chain

There are two major operations in milk processing: (i) Milk Chilling Centers (ii) Dairies.

- I) Farming: The milk is produced from milch animals and are taken care by farming community. These farming communities will collect milk and take it to the milk collection centres
- II) Milk Chilling Centers (MCC)/Bulk Milk Coolers (BMC): The milk collected from different locations is first chilled in MCCs/BMCs. The milk is stored at lower so that it does not spoil and can be further transported to processing. Chilled milk is graded, weighed, sampled and dispatched in tankers for further processing.
- III) Dairies: The dairies are the critical link in dairy value chain where they connect farmers and the consumers. At the dairies the milk is collected and processed to prevent microorganism's growth and also convert into value added products such as curd, cream, paneer, cheese, butter, etc. The dairy process mainly involves heating and cooling, which is used in processes like pasteurization, homogenizing, Clean-in-place (CIP), etc.
- IV) Downstream Transport: Once milk is processed, the products are packed and transported to the retail outlets or to the consumers for further value addition or final consumption.
- V) Consumers: The consumers utilize the milk and milk products as nutritious products.

2.2 Overview: Process Flow in Dairy Plant

The processing techniques that are employed by dairy plants are as diverse as the variety of products manufactured by the industry. The choice of individual processes and process sequence depends heavily on the end product being manufactured. In addition, for any given product, the choice of processes and process sequence can vary from facility to facility. There are many unit processes (i.e., discrete processing steps) that are common across the industry. Raw material specific processes such as pasteurization, homogenization, and cold storage can be found in nearly every dairy processing facility. Furthermore, there are many end product specific processes such as cream, butter, condensed, and evaporated dairy products. Thus, while there is a diversity of processing techniques employed across the industry, a core group of unit processes exists that provides the basic building blocks for process sequences employed in nearly every dairy processing facility, as shown in the figure below:

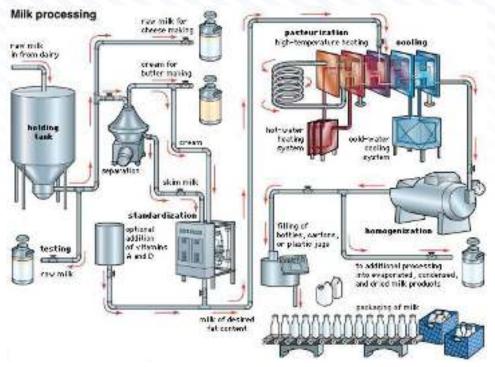


Figure 6: Milk Processing Flow

Receiving Milk at Dairy

All dairy products start with receiving of raw milk from the farm. The raw milk generally is transported by way of tanker trucks and is typically already refrigerated to 7° Celsius (°C).

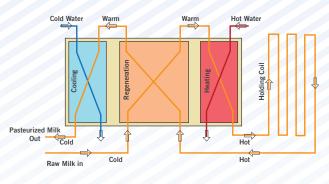

When the raw milk is unloaded into the processing facility, it is sometimes also sent through a centrifuge to remove particulates, a process known as clarification, and cooled to 4°C via a heat exchanger on its way to a refrigerated storage tank. Stored raw milk is kept at a 4°C prior to processing, usually by way of a jacketed storage tank.

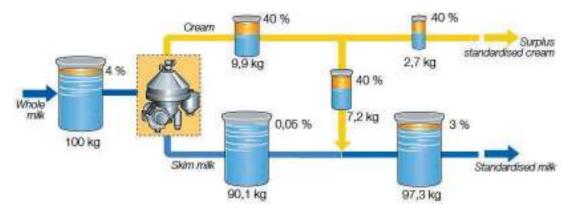
Figure 7: Milk Receiving

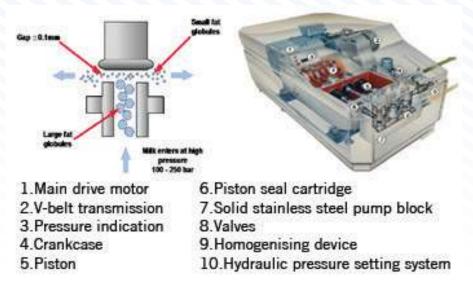
Pasteurization, sterilization, and other heat treatments are occasionally done via a batch process, where a tank of the milk is heated to a specific temperature and held for a specific length of time. However, by far the most common method used is a continuous process.

In a continuous process, a gear pump or a flow regulator is used to deliver a constant and accurate flow rate to the pasteurization process. The stream is passed through a heat exchanger, which heats the milk to the desired temperature. It is then pumped through a specific length of piping to hold it at this temperature for a specified period of time, and then it is cooled back down. Most dairy processors use a process called

regeneration to cut down on energy costs. Regeneration cools the outlet stream by using it to heat the incoming stream, recovering approximately 85% - 90% of the thermal energy. A small amount of steam or hot water is used to finish heating the inlet stream, and a small amount of cooling is used to finish cooling the outlet stream. This heat treatment process serves to kill all the micro-organisms capable of causing diseases. Time and temperature combination is important for the determination of heat treatment.

Standardization is the process to ensure the proper fat content and solids nonfat (SNF) content for the desired finished product. Ensuring the proper fat content can be done in one of two ways. Both processes use a centrifuge to separate the very low-fat content and dense skim portion from the high fat content and less dense cream portion. One process involves analyzing the raw milk's fat content prior to processing, and calculating the proportion of fat to remove during centrifugation. The other process involves completely separating raw milk as it is unloaded from the tanker truck and individually storing the two phases. These two streams are then recombined in the proportions required by the specific product as the first step of processing.




Figure 9: Milk Standardization Process

The latter method is used primarily by larger operations with diverse products, giving them the flexibility to quickly switch the product being produced without having to retest the milk and recalculate the degree of separation. The figure in the illustration is based on treatment of 100 kg whole milk with 4% fat. The requirement is to produce an optimal amount of 3% standardized milk and surplus cream containing 40% fat.

Separation of 100 kg of whole milk yields 90.35 kg of skim milk with 0.05% fat and 9.65 kg of cream with 40% fat. The amount of 40% cream that must be added to the skim milk is 7.2 kg. This gives a total of 97.55 kg of 3% market milk, leaving 9.65 - 7.2 = 2.45 kg of a surplus of 40% cream.

Homogenization: Milk is normally homogenized between the regeneration and heating cycles of the pasteurization process. The purpose of homogenization is to break up the fat globules into smaller sizes and disperse them in the water-soluble component, which prevents them from coalescing and forming the separate layer. Milk fat is what gives milk its rich and creamy taste.

Figure 10: Homogenization Process

Homogenization makes sure that the fat is spread out evenly in the milk. Milk is transferred to an equipment called homogenizer. In this machine, the milk fat is forced, under high pressure, through tiny holes that break the fat cells up into tiny particles, 1/8 their original size. Protein, contained in the milk quickly forms around each particle and this prevents the fat from rejoining. The milk fat cells then stay suspended evenly throughout the milk.

CIP – Clean in Place is a method of cleaning the interior surfaces of pipes, vessels, process equipment, filters and associated fittings, without disassembly. Hygiene is an essential factor in the processing of food products. This requires a good and controlled cleaning or/and sterilization of the processing equipment.

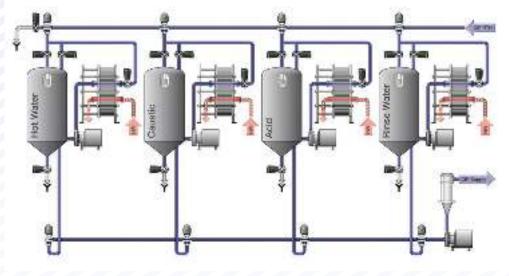


Figure 11: Auto CIP – (Source Alfa Laval)

Packaging and storage: Milk is then pumped through automatic filling machines directly into bags, cartons and jugs. The machines are carefully sanitized, and packages are filled and sealed with automated machines. This keeps outside bacteria out of the milk, which helps keep the milk stay fresh. During the entire time that the milk is at the dairy, it is kept at 1°-2°C. This prevents the development of extra bacteria and keeps the milk fresh.

In addition to the fluid milk, the dairy produces various other value-added products and unit operations and unit processes varies from product to product. And depending on the market demand, the dairies would produce this value-added product. Some of the valueadded products by dairies across India are – butter, cheese, buttermilk, ghee, paneer, curd, milk powder, etc.,

Figure 12: Milk Packaging

2.3 Energy Consumption in Dairy Plants

The dairy industry uses energy in the form of steam, hot water, and electricity for processing milk and milk products. The cost of energy sources used in the industry is increasing continuously, which in turn increases the processing expenses and, therefore, the product cost. Energy costs typically constitute 10%-20% of the overall manufacturing cost. The following table provides an overview of major energy consuming areas within a dairy plant:

Sr. No	Equipment	Process Requirement	Primary Energy	Secondary Energy
1	Pre Chiller	Cooling	Electricity	Chilling Media
2 Pasteurization	Heating	Natural gas (NG)/Briquette/Furnace oil/High Speed Diesel (HSD)	Steam	
	i usteunzation	Cooling	Electricity	Chilling Media
3	Cold Rooms	Cooling	Electricity	Chilling Media
4	CIP	Heating	NG/Briquette/FO/HSD	Steam
5	Milk Powder	Heating	Steam	
6	Value Added Products	Heating	NG/Briquette/FO/HSD	Steam
		Cooling	Electricity	Chilling Media

Table 5: Energy Consumption Overview for Dairy Plant

Energy consumption of different processing plants varies widely, depending capacity utilization, on availability of milk, scale of the plant, technology used, level of automation and product mix. The dairy industry uses energy in the form of steam, hot water, and electricity for the processing of milk and milk products.

Energy Cost - Share (Dairy Plant)

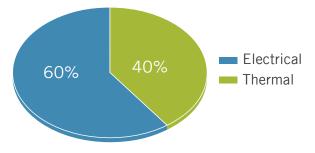
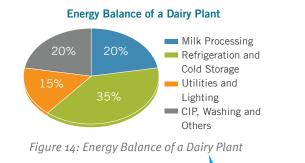



Figure 13: Energy Cost – Breakup (Dairy Plant)

The cost of energy sources used in the industry is increasing continuously, which in turn increases the processing expenses and, therefore, the product cost. Energy costs typically constitute 10%-20% of the overall production cost. The share of primary energy (thermal and Electrical) in a typical dairy plant is depicted in figure 13 and is primarily dominated by electrical energy.

The major portion of energy consumption in a typical dairy goes to refrigeration, general utility, and services, which include heating and steam generation. A certain portion of energy consumption goes to the cleaning operation and the processing activity. The major energy consuming equipment includes refrigeration system, air compressors, lightings, pumps, motors, homogenizers, evaporating plants, separator and clarifiers, effluent treatment plant, CIP and boilers. Figure 14 highlights the overall energy balance of a plant. More than 35% of the total energy consumption is consumed in refrigeration and cold storage, and 30% is consumed in milk processing, which includes heating and cooling, while the remaining energy is consumed in other supporting activities such as cleaning, utilities and packing.

Dairy plants in India have seen significant improvement in energy and productivity in the past few years due to increased levels of automation and technology development. This has helped in improving product quality and operating conditions while reducing product losses, maintenance time, manpower requirement and energy consumption. Innovations like cooling of hot cream with chilled raw milk have been adopted to improve regeneration efficiency and, thereby, reduce energy consumption. The new, dairy plants have implemented new energy efficient process equipment like plate heat exchangers, cream separators, homogenizers, etc. Building designs now provide more natural light coupled with a natural ventilation system, which has led to conservation of energy as well as improvements in operating conditions.

2.4 Technology Status in Haryana Dairy Cluster

The dairies in Haryana have been mostly established during the period of 1960-2000's and have expanded over time with upgradation of equipment and technologies, expansion, and automation & process control. Many of the dairies have also adopted latest technologies in processing and other important areas of the dairy processing plant. Following is the technology status for the dairies in Haryana:

Sr. No	Area	Current Status
	Energy Sources	The electrical and thermal energy are the major energy consumed in the dairy plant.
1		Electrical Energy – The dairy units procures the electricity from distribution companies in Haryana (depending on region) and pay in range of Rs. 6- 8/kWh. Most of the dairy units in the state are grid connected
		The dairy units in Haryana are also spread across NCR. Those units which operate in the regions close to NCR mainly have natural gas & HSD as the fuel. Units towards the interior of Haryana operate mostly on Rice Husk. In addition to these High-Speed Diesel, Furnace Oil and coal is also been used in the dairy units for meeting their thermal energy requirement.
		The dairy units in Haryana use boilers for meeting their steam
2	Steam Generation	requirement. It is generated in range of 6-8 kg/cm ² in the plants and is used in various process such as pasteurizers and other process areas. For units have powdering units, the steam is available in the range of 12-16 kg/cm ²
		Most of the boiler systems in the units are being operated under manual mode & have a good scope for automation. Certain units have tapped the waste heat recovery potential from fuel gas but it can be further improved across the state
3	Steam Distribution	On the steam distribution side, the dairies reduce the pressure of steam through Pressure Reducing Valve (PRV) and is sent to various process/section for use. On the condensate recovery, not many units have the systems in place for maximum recovery and is still a potential area to be targeted. In addition to that the steam traps monitoring and maintenance is also an important area for dairy to focus on. Microturbine installation instead of PRV is not a viable option in the state owing to the lower quantity of steam required & lower working pressures
4	Refrigeration Compressors	The refrigeration system is critical area for any dairy and faster and appropriate cooling is a necessity. Many of the dairy units are using screw compressors (equipped with VFD) and evaporative condensers. However, still few of the units have reciprocating compressors and is a potential area for improvement. In addition to the technology upgradation other areas where improvement is possible are waste heat recovery from compressors, VFD for compressors, etc.
		, ,

Table 6: Technology Status – Haryana Dairy Cluster

Sr. No	Area	Current Status
5	Condensers	In Haryana cluster, many of dairy systems have upgraded their condenser cooling systems from conventional shell & tube to evaporative condensers and this has helped to improve energy efficiency in refrigeration systems. The units who have been using the conventional systems, the use of evaporative condenser is an attractive option to improve energy efficiency.
6	Process Area	Most of units in the cluster have conventional pasteurizers installed. High Regenerative pasteurizers for High Temperature Short Time (HTST) processing can be good option to explore. In addition to the above still some opportunity exists in terms of technology upgradation as well in process automation and control in many dairies.
7	Renewable Energy	Tapping renewable energy for power generation through solar PV is a good potential that can be explored in some of the units. Few of the units have also installed Solar Thermal Systems for hot water in CIP for their BMC's
8	Others	The other equipment and technologies to support dairy processing are Pumping, electrical distribution, compressed air systems and others
8a	Pumping	The pumping systems are used extensively in dairy processing for pumping milk and water. The efficiency of these pump sets needs to evaluated as some pumps are old and when expansion is undertaken new pump sets are installed, but often there is good scope for improvement by avoiding throttling (installation of VFD, trimming of impeller) or installation of high efficiency pump sets (more than 75% efficiency)
8b	Electrical Distribution	Power Factor: Most of the units have installed Automatic Power Factor Controller (APFC) for power factor improvement. For harmonics control, the units have also installed harmonic filters. However, there are certain opportunities which dairies can tapped in electrical distribution such as installation of energy efficient transformers, optimal loading of transformers, installation of energy efficient motors, installation of VFD, soft starters, auto star delta conversion, etc.
8c	Compressed Air	Compressed air in dairy units are used as instrument air and also in packing machines. Most of the units have screw compressors installed

3. Energy Efficiency Opportunities

3. Energy Efficiency Opportunities

3.1 Energy Efficiency in Dairy

The dairy operations are highly energy intensive as the milk and value-added products are to be heated and cooled in various cycles to ensure that they are not spoilt and have longer shelf life. The refrigeration and steam systems are critical and energy consuming area for any dairy and improving energy efficiency in these areas are critical.

Over the years, there has been significant technology improvement in process and utilities area and dairies have been able to improve the energy efficiency in their operations. However, still various opportunities exist for dairies to improve their energy efficiency and to be competitive and have environment friendly operations, the energy efficiency is critical to achieve these goals.

The dairies have been implementing various energy conservation measures across various production process. The energy efficiency at a dairy industry can be viewed at two levels – equipment & component level and process level. The energy efficiency at equipment or component level can be achieved by adopting various new technologies, preventive maintenance, optimum utilization, or replacement of old equipment with new and energy efficiency equipment. In addition to the improving energy efficiency at equipment or component level, the dairy industry in India has made significant improvements in process level efficiency through various energy conservation measures such as automation, process control & optimization, process integration or implementation of new and efficient process.

Often energy efficiency measures when implemented at the dairy operations not only result in improvement in energy efficiency but also in productivity and quality improvement also. To summarize, the energy efficiency strategy for dairy industry can be focused at three levels:

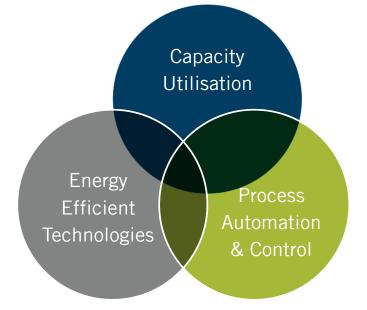


Figure 15: Energy Efficiency Approach – Dairy Industry

3.2 Energy Efficiency Measures

There are various energy consuming areas within a dairy plant and it can be classified as primary energy consuming areas – such as steam systems and refrigeration plant and is further used in form of steam or chilled media (Ammonia, water, glycol), etc. in the processes of the dairy unit. Following figure provides an overview of energy usage in a dairy plant:

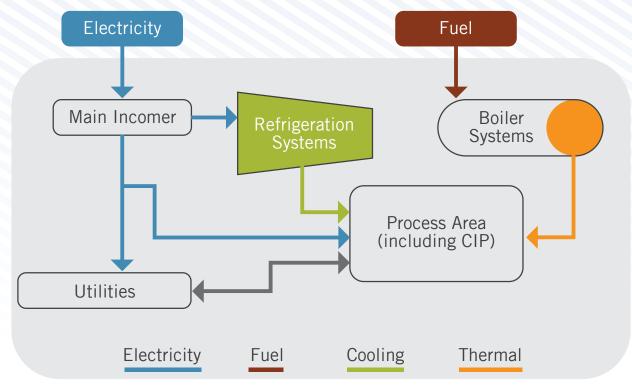


Figure 16: Dairy - Energy Consumption Overview

The following section provides an overview of some of the key energy efficiency measures in major energy consuming areas in a dairy unit. And in further sections, some of the latest applicable technologies are covered.

3.2.1 Energy Efficiency in Steam Systems

The steam or steam generation is an important utility area for dairy as many of the process in the dairy unit requires heating of raw milk or products for various process requirement. The steam is generated in fuel fired boiler and is further distributed in to process through steam distribution systems. The energy efficiency in steam generation and steam distribution is an important area as in any dairy unit it accounts for approximate 25-30% of energy cost. Following are some of the key energy conservation measures in steam generation and steam distribution systems:

Energy Efficiency in Steam Generation and Distribution Systems				
ieneration – Boilers				
Fuel Switch (Coal to Natural Gas (NG))				
Boiler Process Automation & Control				
High Efficiency Burners (for NG)				
Automatic Blowdown				
Condensate Recovery				
Steam Distribution				
Improved Insulation				
Steam Trap monitoring and maintenance				
Flash Steam Recovery				
Proper Design of Distribution Systems				
gement Systems				
Root Cause Analysis				
Others				
Briquette Fired Boiler				

Table 7: Energy Efficiency Measures in Steam Generation and Distribution Systems

3.2.2 Energy Efficiency in Refrigeration Systems

Refrigeration system is a heart of any dairy value chain, from procurement till milk is consumed, the milk is stored in chilled or at lower temperatures. For a dairy unit the refrigeration load can be in range of 30-40% of overall electrical load and is one of the significant contributors to overall energy expenses. Thus, energy efficiency at the refrigeration can significantly impact the energy consumption and energy cost for a dairy unit. Most of the dairy units for chilling application use ammonia-based compressors as it is reliable and efficient to achieve refrigeration effect. The concentrated ammonia is much colder than typical room temperature, which makes it an excellent choice for dairy units. Over the years there has been many technology developments in the refrigeration systems in compressors, condensers, pump sets, controls, etc. Some of the energy efficiency measures in the refrigeration system are as follows:

Energy Efficiency in Refrigeration Systems				
Compressors				
Use of Screw Compressors	Installation of Variable Frequency Drive (VFD)			
Appropriate Refrigeration Charge	Compressor Control and Scheduling			
Optimum Suction Pressure	Monitoring key parameters			
Preventive maintenance	Ammonia Overhead feeding systems			
Two-Stage Compression	Process Automation & Control			
Condensers a	nd Evaporators			
Use of Evaporative Condensers	Preventive maintenance of Condensers			
Automatic Tube Cleaning Systems	VFD for Fans			
Reducing condensing pressure	Auto Controls			
Cycling of evaporators fans				
Cooling Load	Management			
Piping Insulation	Doors/Curtains for Cold Rooms			
Minimizing Heat Infiltration	Separation of Cold/Hot Areas			
Insulation Paint	Maintenance of Heat Exchangers			
Ot	hers			
Use of Energy Efficient Motors	Waste Heat Recovery from Compressors			
Dedicated compressor for Packing Room Cooling	Chilling Centre Monitoring Systems			
Use of Plate Heat Exchangers (PHE) in IBT Cooling	Installation of Falling Film Chiller before IBT			
Use of Direct Cooling in IBT	Use of Vapour Absorption Systems			

Table 8: Energy Efficiency in Refrigeration Systems

3.2.3 Energy Efficiency in Process

Dairy process for processing milk and value-added products has evolved significantly overtime from manual to automatic production. The energy efficiency improvement in process areas will result not only in reduction in demand of utilities (Steam, chilling load, etc.) but also improve the productivity and quality. For example, installation of pasteurizers with high regeneration efficiency can result in reduction in energy demand. Some of the possible energy efficiency measures in process areas in dairy plant are highlighted in the table below:

Table 9: Energy Efficiency in Process Areas				
Energy Efficiency in Process Area				
Pasteurization & Homogenization				
High Regeneration Efficiency Pasteurizers	Pasteurizers Hibernation (Tetra Pak, 2019)			
Low Temperature Pasteurization	Use of Plate Heat Exchanger instead of Tubular Heat Exchanger			
Use of Low-Pressure Homogenization (Tetra Pak, 2019)	Partial Homogenization (Tetra Pak, 2019)			
Process Optimization				
Milk Powder Plant (NDDB, Energy Management in Milk Powder Plants, 2004)				
Application of Computational Fluid Dynamics (CFD)	Mechanical Vapor Recompression			
Optimum Pressure Drop	Energy Efficient Fan			
Heat Recovery from Exhaust Air	Higher Effect Evaporators			
Higher Inlet Temperature of Drying Air	Auto Start up			
Other Measures				
Auto CIP	Heat Pumps Application			
Emerging Pasteurization Techniques	Insulation of Hot and Cold Pipes			
Reuse first effect condensate	-			

3.2.4 Energy Efficiency in Utilities

The utilities such as compressed air, electrical distribution systems waste water treatment, lighting and other areas are also energy consuming sections in a dairy plant and here also many energy efficiency improvement opportunities are available for the dairy units. Following table provides an overview of possible energy efficiency opportunities in utilities areas:

Energy Efficiency in Utilities				
Compressed Air Systems				
Use of Screw Compressors	Use of Demand Side Controller			
Energy Efficient Air Dryers	Auto Drain Valves			
Use of VFD	Appropriate Ventilation in Compressor Room			
Optimum Generation Pressure	Compressor Leakage (less than 5%)			
Pneumatic Equipment to Electric Equipment	Proper distribution systems			
Electrical Dis	tribution Systems			
Automatic Power Factor Controller (pf. 1)	Harmonic Filters			
Energy Efficient Transformers	Optimum Voltage and line balance			
Optimum Loading of Transformers	Energy Monitoring Systems			
P	umps			
Energy Efficient Pump Sets	Trimming of Impellers			
Maintenance of Pump Sets	Coating for Casing			
VFD for Pump Sets	Pumping System Layout			
N	lotors			
Energy Efficient Motors	Star to Delta Conversion			
kVAr Compensators	Preventive Maintenance			
Optimum Loading	Belt Driven to Direct Coupled			
Lighti	ng & Fans			
Use of LED Lights	Use of Brushless Direct Current (BLDC) - Ceiling Fans			
Occupancy Sensors	Use of Natural Light (Light Pipe)			
Heating Ventilation and Air Conditioning (HVAC)				
Use of Star Rated A	Use of Energy Efficient Air Handling Unit (AHU)			
Smart AC Controller	Variable Refrigerant Flow units			
Energy Monitoring and Control	Optimum Cooling at 24°C			

Table 10: Energy Efficiency in Utilities

Energy Efficiency in Utilities				
Renewable Energy				
Solar PV Installation	Solar Thermal (Evacuated Tube)			
Biogas Utilization	Briquette fired boilers			
Waste	Water Treatment			
Use of Membrane Bio-Reactor (MBR) System	Bio-Gas Utilization (Piped Natural Gas)			
Energy Efficient Pump Sets	Energy Efficient Blowers			
Automation and Control				
Other measures				
Use of Phase change materials	Cogeneration			
Trigeneration	Application of Internet of Things (IOT)			
Pinch Analysis	-			
Water Con	servation Measures			
Rainwater Harvesting	Water Efficient fixtures			
Reuse of water in gardening	Application of IOT			
Energy Management Systems				
Implementation of ISO 50001:2018 – Energy Management Systems	Energy Efficiency Targets and Improvements (Roadmaps)			

3.2.5 Best Practices and Key Indicators for Energy Efficiency

In addition to the above measures, the dairies can also follow the best practices and monitor key performance indicators for ensuring energy efficient operations and processes.

Sr. No.	Measures	Productivity Impact	Estimated Savings		
	Steam Generation and Distribution				
1	Generate and transfer steam closer to rated boiler pressure	More output when compared with low pressure steam generation.	3% - 4 % fuel savings		
2	Utilize steam at lowest pressure in case of indirect heating	Better heat transfer, less cycle / heating time, fuel saving and productivity.	For an indirect process requirement with temperature of 80°C, if steam at 3.5 kg/ cm ² g is used instead of 2 kg/cm ² g, the heat loss is in the range of 2% - 3%.		
3	Maintain high boiler feed water temperature	Increased boiler efficiency	Increasing feed water temperature by 1 °C results in 1% fuel savings		
4	Maintain Flue Gas Stack exit temperature between as low as possible depending on fuel	Increased life of components in flue gas circuit like duct, fan, stack. Reduction in downtime and maintenance cost	Every 22°C reduction in flue gas exit temperature results in 1% fuel savings		
5	Install Auto Blow Down System	Lower fuel cost due to reduction in makeup water and better boiler efficiency	Annual savings of 18 Tons of briquette for a 2 TPH boiler operating with continuous manual blowdown		
6	Condensate Recovery from Process	Improves boiler efficiency	10% - 15% fuel savings with 90% condensate recovery		
		Refrigeration Systems	5		
7	Raise the chilled water temperature and reduce condenser water temperature to possible extent	Optimum cycle time and energy consumption	Raising of chilled water temperature by o.5°C to 1°C results in 2% - 3% power saving, and if the condenser water temperature is decreased by 2°C to 3°C, the system efficiency can increase by as much as 2% - 3%.		
8	Avoid scale formation and fouling in heat exchangers	Optimum cycle time and energy consumption	2% - 3% savings in compressor power		
9	Install Variable Frequency Drives (VFDs) for evaporator fans.	None	10% - 15% savings in evaporator fan power consumption		
10	Waste Heat Recovery from chiller compressor	None	7% - 8% fuel savings		
11	Replacing shell and tube condenser with evaporative condenser	Water savings	50% savings in condenser auxiliary power and 8% - 10% savings in compressor power		
12	Installation of VFD for chiller compressor	None	8% - 10% power savings		
13	Installation of Prechiller before IBT	None	20% - 30% savings in compressor power		

Table 11: Best Practices for Energy Efficient Operations

Sr. No.	Measures	Productivity Impact	Estimated Savings		
	Compressed Air				
14	Arrest air leakages in the compressed air system	Zero down time due to instrumentation fault / low compressed air pressure fault. Target less than 5%	Every 10% reduction in air leakage reduces the electrical energy consumption by 10%.		
15	Generate compressed air at the optimum pressure	None	A reduction in the delivery pressure by 1 bar in a compressor would reduce the power consumption by 8%.		
16	Replacement of old inefficient compressor with screw compressor	Zero down time due to less maintenance	10% - 15% compressor power savings		
17	Installation of VFD in air compressor to avoid unloading	None	15% compressor power savings		
		Process Area			
18	Process control optimization	High productivity improvement	10% - 12% cost savings		
19	Proper monitoring of pasteurization process parameters	Monitoring of key parameters allows proper functional evaluation of pasteurizer, which helps in upkeep of productivity.	 Every 1°C increase of milk temperature after regenerative heating zone reduces steam consumption by 1.9 kg / kl of milk. Every 1°C reduction of milk temperature after regenerative cooling zone reduces chilling load by 0.33 TR / kl of milk. 		
		Others			
20	Replace low efficiency pumps with energy efficient pumps	Reducing the cycle time for process applications	15% - 25% savings in power		
21	Use of VFDs for controlling the pump speed as per process requirement	None	20% - 30% savings in power		
22	Improvement of overall power factor of the plant	None	10% - 20% cost savings		
23	Installation of light pipe to avoid artificial lights during day time	None	100% savings in power		
24	Replacement of Ceiling Fans with Energy Efficient BLDC fans	None	50% power savings		
25	Replacing old-rewound motors with energy efficient motors	None	20% - 30% savings in power		
26	Energy savers for split ACs	None	20% - 30% savings in power		
27	Biogas Generation from ETP	None	2% - 3% energy reduction		
28	Solar Thermal System	None	5 kl Solar thermal can result in INR 2.5 lakh saving		

Monitoring of critical parameters of facilities and equipment are essential for ensuring optimal performance of key energy consumers in the dairy. Some of the useful energy indicators which plants can utilize for monitoring their performance are given below:

6	able 12: Lifergy – Key Performance indicators				
Sr. No.	Parameter	Measurement Unit	Indicator		
1	Boiler Steam Pressure	kg/cm ²	Nearer to boiler rated pressure		
2	Boiler Steam Temperature	°C	Nearer to boiler rated temperature		
3	Boiler Water TDS	ppm	3,200 – 3,500 ppm		
4	Oxygen in Boiler Flue Gas	%	FO/NG fired – 2.5% – 3% Briquette/Wood fired – 4%		
5	Boiler Flue gas temperature	°C	120 - 180 °C for package boilers		
6	Steam to Fuel Ratio / Evaporation Ratio		2 - 3.5 for biomass fired boilers 4 - 7 for coal fired boilers 11 - 14 for oil /gas fired boilers		
7	Specific Steam consumption at Pasteurization process	kg steam / kl milk	Indirect: 20 - 22 kg /kl Direct: 16 - 19 kg / kl		
8	Feed Water temperature	°C	Above 85 °C		
9	Range of Cooling Tower	°C	9 - 12 °C		
10	Approach of Cooling Tower	°C	3 - 4 °C		
11	Refrigeration Compressor Specific Energy Consumption	kW/TR	o.8 - o.9 kW/TR for Screw Compressors 1.1 - 1.3 kW/TR for Reciprocating Compressors		
12	Ice Bank Tank (IBT) & Cold Room Temperature	°C	IBT: o °C - o.5 °C Cold Room temperature based on product stored		
13	Compressed air Generation Pressure	kg/cm²	Closer to user requirement		
14	Compressed air Loading %	%	8 0 - 90%		
15	Compressed air Unloading %	%	10 - 20 %		
16	Compressed air SEC	kW/cfm	o.18 kW/cfm for Screw Compressors o.14 kW/cfm for Reciprocating Compressors		
17	Pasteurization Raw milk inlet temperature	°C	4 - 7 °C		
18	Temperature after pre- heating by Regeneration	°C	9 – 10 °C lesser than pasteurization Temperature		
19	Pasteurization Temperature	°C	75 - 79 °C, depending on holding time		
20	Temperature after pre- cooling by Regeneration	°C	15 - 20 °C		
21	Chilled Milk Temperature	°C	3 – 4 °C		

Table 12: Energy – Key Performance Indicators

Sr. No.	Parameter	Measurement Unit	Indicator
22	Electrical Parameters for Motors	kW, V, I, A, PF	Voltage +/-5% of rated voltage Within +/-5% of rated current Motor Loading > 80% for better efficiency range
23	Electrical Parameters	kW, V, I, A, PF, Harmonics	Plant LT voltage should be 410 -415V PF closer to unity Transformer loading - 50% -60% VTHD < 8% at 415 V side ITHD < 15% at 415 V side

4. Energy Efficient Technologies – Case Studies

4. Energy Efficient Technologies — Case Studies

The energy efficiency measures mentioned in previous chapters are some of the measures which have been implemented in dairy units. The following chapter focuses on some of the above-mentioned technologies which are promising and have been implemented in few dairies and has wide scale potential for implementation (Case Study). These technologies are described in more detail and wherever possible a case reference from a dairy who has implemented the technology has been included. In most of the examples, typical energy saving data, Greenhouse Gas (GHG) emission reduction, investments, payback period, etc., have been highlighted. As these case studies are included to provide confidence to dairies to implement technologies, the applicability of these measures may vary from a unit to unit and further technical and financial analysis would be required for individual dairy units. Following case studies are mentioned in detail in subsequent section:

Sr. No.	Technologies				
	Steam Generation and Distribution				
1	Condensate Recovery System				
2	Steam Operated Pumping Traps				
	Refrigeration Systems				
3	Installation of Screw Refrigeration Compressor				
4	Variable Frequency Drive (VFD) in Chiller Compressor				
5	Evaporative Condenser				
6	Falling Film Chiller				
7	Energy Efficient Agitator for IBT				
8	Desuperheater for Compressors				
9	kVAr compensator for chiller compressor				
10	VFD for chilled water pumps				
11	Direct Cooling Method – Ice Bank Tank (IBT)				
12	Thermal Energy Storage for Bulk Milk Coolers (BMC)				
13	BMC Remote Monitoring system				
	Utilities				
14	VFD for Air Compressor				
15	Energy Efficient Pumps				
16	Package Type Biogas Reactor				

Table 13: Case Studies for Haryana Dairy Sector

Sr. No.	Technologies	
17	Methane Capture from dairy effluents	
	Process	
18	Installation of High Regenerative Efficiency Pasteurizer	
Renewable Energy		
19	Solar rooftop system	
20	Solar Thermal System	
21	Solar Wind Hybrid	

4.1 Case Studies in Steam Generation and Distribution

4.1.1 Condensate Recovery System

Baseline Scenario

The unit has installed one 3 TPH briquette-fired boiler and two FO-fired boilers for the process applications, such as pasteurization, curd making, CIP, crate washing, etc. Briquette fired boiler is running and the others are on standby. The heating process in dairy is done by indirect heating. One of the major applications of steam is pasteurization process, where the milk is heated to 72°C for 16 seconds, and quickly cooled to 4°C. This process slows spoilage caused by microbial growth in the food. Hot water at around 70°C to 80°C is used for indirect heating in the pasteurization process. The condensate after the process heating is currently drained or used in cleaning crates. As the condensate has some heat available which can be utilized in the boiler or any other indirect heating for the processes, such as CIP, crate washing, etc. It was also observed that since most of the condensate drains are left open to atmosphere, it results in flashing of steam, which is a wastage of energy.

Proposed System

Condensate recovery is a process to reuse the water and sensible heat contained in the discharged condensate. Recovering condensate instead of draining it can lead to significant savings of energy, chemical treatment and make-up water. Installation of a flash vessel and condensate transfer/pumping unit to recover all the condensate from various processes. Condensate pumping/transfer system can pump a huge quantity of condensate, effectively utilizing steam, known as motive steam. Condensate is one of the purest forms of water having low electrical conductivity of only 5 μ S/cm or TDS value of 3.5 ppm.

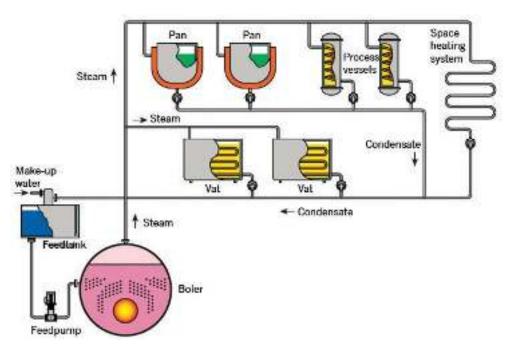


Figure 17: Typical condensate recovery system

Condensate flow from receiver of the pump to the pump body and the level of water starts increasing and reaches the high level. This is sensed by the conductivity-based level sensor, which activates the motive steam inlet valve. Steam enters the pump at high pressure and the pressure in the pump body keeps on building till it overcomes the back pressure of the delivery side. Now, the outlet check valve opens and the condensate starts flowing out of the pump body, using high pressure of the steam. As soon as the level in the pump reaches the low-level position, the inlet valve for the motive steam is de-activated, and the pump is de-pressurized. The pump again starts filling and the cycle repeats. The system requires no electric motor for operation. As the quantity of condensate discharged at each stroke is known, the total volume passed during a given period can be calculated by counting the number of strokes during the period. Such a counter is provided, enabling display of the total condensate pumped. The totalized volume of condensate pumped is displayed on an electronic unit.

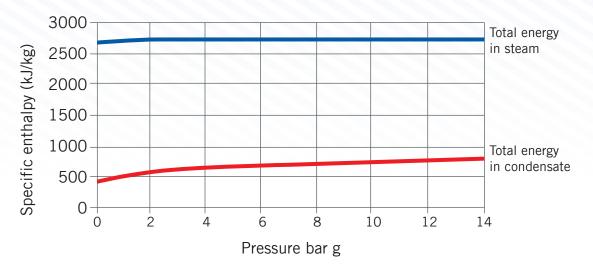


Figure 18: Heat content in condensate

A flash steam generator can be installed for recovery of flash steam just before the condensate recovery system. When high pressure condensate is discharged from steam traps to low pressure condensate return lines, excess energy is released in the form of flash steam. This flash steam can be used to heat boiler feed water or for low pressure steam application.

<u>Merits</u>

- High availability due to zero moving parts.
 - ♦ High reliability and equipment availability.
 - ♦ Low wear & tear.
 - \diamond Low maintenance.
 - ♦ Low downtime.
- High motive inlet pressure; no need of pressure reducing valve/ station till 10 kg/cm², where low pressure steam is not available, hence saving on installation cost.

- High discharge of condensate: 50 litres per stroke.
- High condensate temperature return: No cavitation issues over electrical pumps.
- Conductivity-based level controller (a stringent quality & design process followed in European market, to ensure safe operation).
- ✤ A large LED display with flow totalizer to display the total volume displaced.
- Suitable for outdoor installations.
- Energy efficient pump; steam trap drain and pump vent taken back to the receiver tank to minimize vent losses.
- Electrical motor required.

Limitations

- Requires regular maintenance.
- Estimation of proper back pressure.
- Inventory of electronic spare parts to be maintained.

Cost Benefit Analysis

The expected fuel savings to be achieved by installation of condensate recovery system is 1.1 tons of Briquette, annually. The annual monetary saving for this project is INR 7.41 lakh, with an investment of INR 6.40 lakh, and a payback period of 10 months.

Parameters	UOM	
Boiler Capacity	ТРН	3
Operating Pressure	kg/cm ²	9
GCV	kJ/kg	16,736
Fuel Cost	INR/kg	6.6
Fuel Consumption	kg/hr	209
Boiler Efficiency	%	75
Enthalpy of steam at 9 Bar	kJ/kg	2,773
Steam Flow	kg/hr	1024.00
Condensate Available considering losses	kg/hr	900
Condensate Working Pressure	kg/cm²	1.5
Flash Steam	%	5.19
Mass of Flash Steam	kg/hr	46

Table 14: Cost Benefit Analysis – Condensate Recovery Systems

Parameters	UOM	
Mass of Condensate Available	kg/hr	853.33
Latent Heat of flash steam	kJ/kg	2107.5
Fuel saved from condensate recovery	kg/hr	11
Fuel saved from flash steam recovery	kg/hr	7
Total Fuel Saved	kg/hr	18
Operating Hours	hours	17
Operating Days	days/year	360.00
Annual Fuel Savings	kg	1,12,348.24
Monetary Savings	INR lakh	7.41
Investment	INR lakh	6.40
Payback	months	10
IRR	%	143.60
NPV at 70% debt (12% rate)	INR lakh	34.64

Energy & GHG Savings

Reference Plant Implementation

Table 15: Reference Implementation – Condensate Recovery Systems

Project Name	Installation of Condensate Recovery System
Supplier 1	
Objective	Installation of condensate recovery system to recover the condensate and use it as feed water for boiler

Project Name	Installation of Condensate Recovery System
Unit profile	Amul Fed Dairy is the apex organization of the Dairy Cooperatives of Gujarat. It manufactures products like milk, butter milk, flavoured milk, lassi, ghee and ice cream, etc.
Installation Photo	
Assumptions Made	 ♦ Operating hours – 16hrs/day ♦ Boiler efficiency – 81% ♦ GCV of fuel – 15,062 kJ/kg
Savings (INR lakh)	₹ 7.11
Investment (INR lakh)	₹ 3.20
Simple Payback Period	6 months
Replication potential	In all the dairy units irrespective of size and milk chilling centers.
Outcomes	 148.15 T of biomass saved annually. Increase in feed water temperature.
Unit contact details	Mr. Paresh Mehta Amul Fed Dairy Plot No 35, Gandhinagar Ahmedabad Road, Bhat , Gujarat Phone: 93750 51780
Cluster Reference	Gujarat Dairy Cluster

Vendor Details

Table 16: Vendor Details – Condensate Recovery Systems

Equip	ment Detail	Condensate Recovery Systems
	S	Supplier 1
Supplier Name		Forbes Marshall
Address		Forbes Marshall Pvt Ltd Mohali - 160065
Contact Person		Mr. Ankush Kamboj
Mail Id		akamboj@forbesmarshall.com
Phone No		+91 9915017178

4.1.2 Steam Operated Pumping Traps

Baseline Scenario

The unit has installed two FO fired boilers of 2 TPH capacity each for the hot water requirement inside the plant. The details of boiler are given below:

Table 17: Boiler details				
Boiler	Fuel Type	Design Capacity (TPH)	Operating pressure (kg/cm²)	Design pressure (kg/cm²)
Boiler 1	FO - Running	2 TPH	8	10
Boiler 2	FO - Standby	2 TPH	-	10

The FO is initially preheated using an electric heater in tank and then used for firing inside the boiler. The major steam consuming equipment's are given below:

1 No. of 5 kl Heat Exchanger at CIP section

♦ Operating pressure	•	3.5 kg/cm² g
2 Nos. of Crate Washers		
♦ Operating Pressure	-	3.5 kg/cm² g
✤ 4 Nos. of CIP Tanks		
♦ Operating pressure	-	3.5 kg/cm² g

For the 5-kl heat exchanger in CIP section, the steam flow to the Heat Exchanger is regulated by a Proportional Integral Derivative (PID) based Temperature Control Valve (TCV) which is taking feedback from the temperature sensor at the outlet hot water line. Now, as the set temperature of hot water is attained, the TCV tends to close position. This in turn causes the steam flow rate, and thus steam pressure be reduced, which in turn causes water logging at the steam trap due to the lack of required differential pressure across the trap.

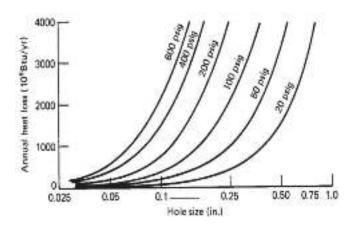


Figure 19: Steam Loss Chart

A steam trap will be operational only above the rated minimum differential pressure. Normally, operation of a steam trap requires a minimum differential pressure of 0.1 kg/cm², however, this may vary with manufacturers. If the condensate flow pressure is lesser than the minimum required differential pressure, waterlogging happens which is also called stalling. This leads to problems of hammering, reduction of thermal performance of heat exchanger, corrosion of heating surfaces, inevitably reducing the service life of exchanger.

Now, to avoid this stall condition of steam traps, equipment operator normally operate the bypass valve, either keeping bypass line partially open full time or intermittently opening and closing of bypass line. In both the cases, live steam loss occurs, thereby increasing the energy consumption. The orifice size of 15 NB bypass valve open is 5 mm at 3.5 kg/cm² operating pressure. Through this orifice size steam loss is 30 kg/hr from the steam loss chart.

Proposed System

It is recommended to replace the ball float steam trap with Steam Operated Pumping Trap (SOPT). With this system in place, whenever the condensate pressure is low, motive steam / air shall provide the additional thrust to make the condensate flow and avoid any stalling.

Merits

- Improved condensate recovery.
- Reduced steam leakages through the system.

Limitations

Proper maintenance is required.

Cost Benefit Analysis

The expected fuel savings by installation of SOPT is 4,162 kg of FO annually. The annual monetary saving for this project is **INR 1.54 lakh with an investment of INR 1.51 lakh and payback for the project is 12 months.**

Parameters	UOM	
Orifice Size	mm	5
Operating Pressure	kg/cm ²	3.5
Steam loss through orifice	kg/hr	30
Considering 50% live steam leakage	kg/hr	15
Enthalpy of steam at 3.5 kg/cm ²	kJ/kg	2723
Total heat loss	kJ/hr	40856
GCV of Fuel	kJ/kg	41003
Boiler Efficiency	%	79
Fuel Loss	kg/hr	1.26
Operating hrs	hrs	3300
Annual Fuel Savings	kg	4162.297

Table 18: Cost Benefit Analysis – Installation Steam Operated Pumping Traps

Parameters	UOM	
Fuel Cost	INR/kg	37
Monetary Savings	INR lakh	1.54
Investment	INR lakh	1.51
Payback	months	12
IRR	%	128.76
NPV at 70% debt (12% rate)	INR lakh	7.11

Energy & GHG Savings

Vendor Details

Table 19: Vendor Details – Steam Operated Pumping Trap	Operated Pumping Traps
--	------------------------

	Equipment Detail	Steam Operated Pumping Traps
Supplier 1		
Supplier Name		Forbes Marshall
Address		Forbes Marshall Pvt Ltd Mohali 160065
Contact Person		Mr. Ankush Kamboj
Mail Id		akamboj@forbesmarshall.com
Phone No		+91 9915017178

4.2 Case Studies in Refrigeration Systems

4.2.1 Installation of screw refrigeration compressor

Baseline Scenario

The unit has 5 reciprocating chiller compressors of 90 kW & 70 TR each based on vapour compression ammonia cycle. These compressors cater for the chilled water requirements & FCU units in the cold storage area. Of the 5 compressors installed, two compressors will be running during morning time and three compressors will be running during night time for ice formation in the IBT. The performance of the chiller compressor is shown below:

Parameters	UOM	
Rated Refrigeration Capacity (2 x 70 TR)	TR	140
Rated Power (2 x 90 kW)	kW	180
Design SEC	kW/TR	1.29
Condensing Temp	°C	35 to 40
Suction Pressure	psi	35.55
Discharge Pressure	psi	177.79
Discharge Temperature	°C	100 t0110
Total Operating Power	kW	122
Total Operating TR	TR	92
Operating SEC	kW/TR	1.33

Table 20: Operating Parameters of compressors

Currently the reciprocating compressor is running continuously at full load irrespective of the load variations in the plant and operating SEC is 1.33 kW/TR which is on higher side. As in any dairy processing unit, during the day time, when all the processes (mainly pasteurization and pre chilling of raw milk) are in operation the compressor is 80% to 100% loaded and consumes more power. During the night, the cooling requirement drops & the compressor runs only for the purpose of maintaining the temperature on the Ice Bank Tank (IBT). During this time the total refrigeration load on the plant is less but still the compressor takes the same power as it was consuming during the peak load.

Proposed System

It is recommended to replace the existing reciprocating compressors with 155 TR screw compressor equipped with VFD. The table below shows the comparison of screw and reciprocating compressor:

Comparison Between Screw Compressor and Reciprocating Compressor		
Screw Compressor	Reciprocating Compressor	
Fully automatic and has variable capacity control system from 10 to 100%. This means at any % of capacity, screw would operate precisely at this point and power consumption will be linear correspondingly which means compressor perform at peak efficiency under varying load condition.	Unloaded step-wise only, that means partial loads operate at lower suction than designed suction which load to lower volume efficiency and high- power consumption resting in higher KW / TR.	
Ideal for larger plant as they can reduce installation cost, installed power and space by eliminating 3 to 4 reciprocating compressors.	Ideal for small plant. Spares inventory for maintaining 3 to 4 reciprocating compressors more / high.	
BKW / TR is on lower side at any suction temperature	Always on higher compare to screw.	
Connected motor rating also less	High compare to screw.	
Direct coupled. No belt loss.	Belt direction minimum 3% for belt losses.	
No tolerance required.	Tolerance required at 2.5%.	
Fewer moving party and simple rotation motor which means less maintenance, vibration levels, less friction loss.	Many moving parts. That means high repair cost.	
Having efficient oil separation system for better oil management and low oil carry loss.	Oil carry over more.	
Having PLC based control panel which constantly monitor the system and maintain most efficient operation condition.	Through manual cut-outs.	

The screw compressor with VFD proposed for the plant will operate at lower kW/TR of 1.00 compared to 1.33 kW/TR when operating with reciprocating compressor. Also, the VFD installed along with compressor will results in smooth control of operation as the suction pressure is given as feedback to the compressor. Based on the refrigeration load the refrigerant temperature required will varies and hence the suction pressure. During the light load condition when the pasteurization process stops compressor runs only to maintain IBT temperature and to maintain the temperature in cold storage. During this time with suction pressure as the feedback. Once the evaporator achieves the desired temperature, with proper feedback the speed of the compressor can be reduced and hence power savings can be achieved.

<u>Merits</u>

- Variable Volume Ratio control.
- Efficient Oil Separation & low oil carry over.
- PLC based system for efficient operation.
- Higher reliability of operation.
- Reduced maintenance.

Limitations

- ✤ Higher installation costs.
- May require system stoppage during installation.

Cost Benefit Analysis

The expected savings by installation of Screw Compressor with VFD is 2,79,690 units of electricity annually. The annual monetary saving for this project is **INR 15.38 lakh with an investment of INR 52.00 lakh and payback for the project is 3.44 years.**

Parameters	UOM	
Rated Refrigeration Capacity (2 x 70 TR)	TR	140
Rated Power (2 x 90 kW)	kW	180
Design SEC	kW/TR	1.29
Condensing Temp	°C	35 to 40
Suction Pressure	psi	35.55
Discharge Pressure	psi	177.79
Discharge Temperature	°C	100 t0110
Total Operating Power	kW	122
Total Operating TR	TR	92
Operating SEC	kW/TR	1.33
Recommended Design TR	TR	155
Recommended Design Rate Power	kW	159
New SEC	kW/TR	1.02
New Power Consumption	kW	94.19
Power Savings	kW	28
Energy Cost	INR/kWh	5.5
Operating Hours	hrs	8600
Savings on VFD	%	5.00
Savings on VFD	kW	4.71
Total Power Savings	kW	33
Annual Energy Savings	kWh	2,79,690.37

Table 22: Cost Benefit Analysis – Installation of Screw Compressor

Parameters	UOM	
Annual Cost Savings	INR lakh	15.38
Investment	INR lakh	52.9
Payback	Years	3.44
IRR	%	44
NPV at 70 % Debt (12% rate)	INR lakh	53.75

Energy & GHG Savings

Vendor Details

Equipment Detail	Screw compressor with VFD
Supplier Name	Frick India Ltd
Address	New No. 243 (Old No. 185) Anna Salai, Chennai – 600 006
Contact Person	Mr. T.T. Krishnamoorthy
Email Id	ttk@frickmail.com
Phone No	9444818846

4.2.2 VFD in Chiller Compressor

Baseline Scenario

The dairy unit has installed 5 reciprocating chiller compressors of 33 TR each based on vapour compression ammonia cycle. These compressors cater to the chilled water requirements & Fan Coil Unit (FCU) in the cold storage area. Of the 5 compressors installed, two compressors are running during morning time and three compressors runs during night time for ice formation on the IBT. The performance of the chiller compressor is shown below:

Parameters	UOM	
Rated size of compressor	kW	33
Rated Capacity	TR	45
No of Compressors in operation	Nos	2
Compressor 1 Power	kW	41.60
Compressor 5 Power	kW	38.90
Suction Pressure Compressor 1	psi	30
Suction Pressure Compressor 5	psi	39
Discharge Pressure Compressor 1	psi	196
Discharge Pressure Compressor 5	psi	190
Discharge Temperature	°C	92
Condensing Temperature	°C	38
Total Operating Power	kW	80.50
Operating TR	TR	51.93
SEC	kW/TR	1.55

Table 24: Operating Parameters of compressors

Currently the reciprocating compressor is running continuously at full load irrespective of the load variations in the plant. As in any dairy processing unit, during the day time, when all the processes (mainly pasteurization and pre chilling of raw milk) are in operation the compressor is 80% to 100% loaded and consumes more power. During night, the cooling requirement drops & the compressor runs only for the purpose of maintaining the temperature on the Ice Bank Tank (IBT). During this time the total refrigeration load on the plant is less but still the compressor takes the same power as it was consuming during the peak load as there is no speed control mechanism.

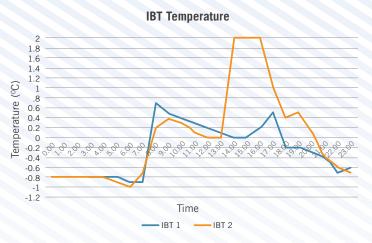
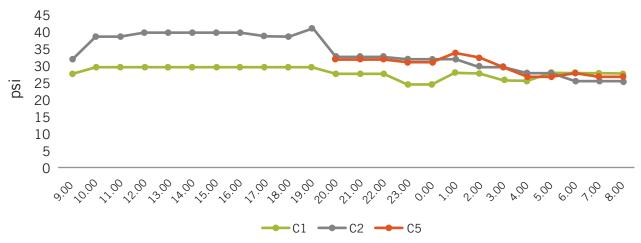



Figure 20: IBT temperature profile

The figure here shows the temperature profile of IBT for a duration of 24 hrs. It is seen that at night i.e., from the temperature is subzero for IBT 2 and IBT 1. During this time compressor is running only maintain ice on the IBT and also for the cold store rooms. Plant is running two low speed compressors during night time without any speed control.

Total compressor power for a system is a function of its suction pressure, discharge pressure, total system load, part load controls and unloading (specifically in the case of screw compressors which do not unload linearly). A lower refrigerant temperature results in lower suction pressure and increased compressor power requirements. A lower condensing pressure, which is a function of the condenser capacity and operations, results in a lower compressor discharge pressure and less compressor power. The above figure shows the variation of SP with time for the compressors installed in the plant. It is seen that Compressor 1 is operating with a higher suction during day time due to high demand and compressor 2 is operating with SP of 30 psi. During the 08:00 PM third compressor is also switched on and it is clearly seen that SP of compressor 1 drops to 28 PSI during this time and all the compressors are running at low suction which clearly indicated low demand of load. During night time there is a good potential for VFD as it can reduce the speed of one compressor based on suction and helps in reducing power consumption.

Figure 21: Compressor Suction Pressure

Once the evaporator gets wet with the help of refrigerant and temperature is attained, if there is no speed control the compressor will do the same work to attain lower refrigerant temperature which results in lower suction pressure thereby consuming same power as it is loaded. In such cases VFD can reduce the power consumption with the help of speed control by proper feedback mechanism.

Proposed System

It is recommended to install VFD for one high speed compressor with suction pressure as the feedback. The VFD helps in smooth control of operation of the compressor and the high-speed compressor can take care of the load, when suction pressure of the low speed compressor exceeds the set value. At this time, the compressor with VFD can take care of the additional demand due to increased suction.

<u>Merits</u>

- Better operating efficiencies.
- Reduced power consumption.
- Smooth control of compressor.
- VFD can act as a soft starter.

Limitations

Speed reduction is possible up to only 25 Hz.

Cost Benefit Analysis

The expected electricity savings by installation of VFD for refrigeration compressor is 25,200 units annually. The annual monetary saving for this project is **INR 1.38 lakh with an investment** of **Rs 2.66 lakh and payback for the project is 23 months.**

Parameters	UOM	
Total Compressor Power	kW	80.50
Refrigeration Load	TR	51.93
SEC	kW/TR	1.55
VFD Power Savings	%	10
Power Savings on one compressor	kW	4.2
Operating hours	hrs	6000
Energy Savings	kWh	25200
Cost Savings	INR lakh	1.38
Investment	INR lakh	2.66
Payback Period	months	23
IRR	%	73.04
NPV at 70 % Debt (12% rate)	INR lakh	5.78

Table 25: Cost Benefit Analysis – VFD for Refrigeration Compressor

Energy & GHG Savings

Vendor Details

Table 26: Vendor details – VFD for Refrigeration Compressor

Equipment Detail	VFD for chiller compressor
Supplier Name	Danfoss Industries Ltd
Address	703,7th Floor, Kaivanya Complex, Near Panchwati Cross Road Ambawadi, Ahmedabad
Contact Person	Mr. Srihari Vyas
Email Id	Shrihari@danfoss.com
Phone No	9825024991

4.2.3 Evaporative Condenser

Baseline Scenario

The unit has installed 2 reciprocating chiller compressors of 180 HP and 150 HP with 100 TR capacity each for chilled water requirement in the plant. In a refrigeration cycle, when the compressor run, the refrigerant starts flowing through the system. The compressor continuously sucks low pressure, low temperature refrigerant vapors from the evaporator and pump it to condenser at high pressure and temperature. While flowing through the condenser, the high temperature vapors release their heat to atmosphere and condense to high pressure liquid state. After condenser this high-pressure liquid enters the expansion valve where it is throttled to low pressure. On throttling the pressure and temperature of refrigerant decreases and when this low pressure, low temperature throttled liquid flows through evaporator, it sucks heat and produce cooling. On absorbing heat in evaporator all the low-pressure liquid evaporates to low-pressure, low-temperature vapors, which are again sucked by compressor. In this way all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator. The dairy has installed a PHE condenser for 180 HP Chiller and a shell & tube condenser for 150 HP Chiller and both the system have open cooling tower arrangement for the refrigeration system. The schematic of existing condenser system is given below:

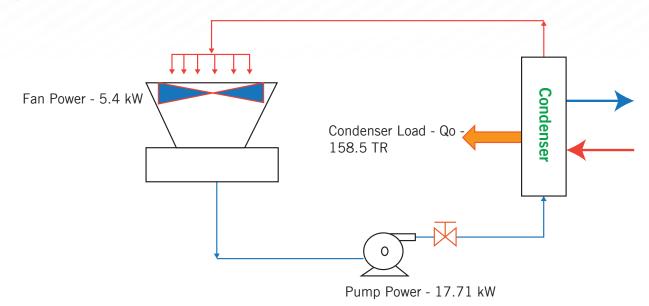


Figure 22: Existing Condenser System

The plant is having a normal PHE condenser with cooling tower arrangement for the 180 Hp chiller. The compressor is running at 40°C condensing temperature and -2°C evaporation temperature. As the current system has separate PHE condenser and CT, the auxiliary loads are on the higher side and also the water quality can affect the condenser performance due to scaling and fouling. This can result in increased power consumption of chiller compressor. During the study it was also found that condensing temperature was on the higher side. Lower the condensing temperature better the performance of chiller compressor. The following table shows the power consumption of existing system.

Table 27:	Existing	Parameter	– Refrige	eration Systems
-----------	----------	-----------	-----------	-----------------

Sr. No.	Parameter	UOM	
1	Chiller Compressor	kW	103
2	Condenser Pump	kW	17.71
3	Cooling Tower Fan Power	kW	5.4

Proposed System

It is recommended to replace the existing PHE condenser with evaporative condenser.

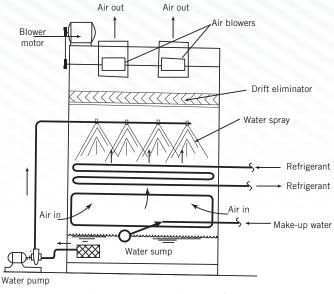


Figure 23: Evaporative Condenser

Evaporative condensers combine the features of a cooling tower and water-cooled condenser in a single unit. In these condensers, the water is sprayed from top part on a bank of tubes carrying the refrigerant and air is induced upwards. There is a thin water film around the condenser tubes from which evaporative cooling takes place. In evaporative condenser the vapor to be condensed is circulated through a condensing coil, which is continually wetted on the outside by a recirculating water system. Air is pulled over the coil, causing a small

portion of the recirculating water to evaporate. The evaporation removes heat from the vapor in the coil, causing it to condense. The heat transfer coefficient for evaporative cooling is very large. Hence, the refrigeration system can be operated at low condensing temperatures (about 11 to 13 °C above the wet bulb temperature of air). The water spray countercurrent to the airflow acts as cooling tower. The role of air is primarily to increase the rate of evaporation of water. The required air flow rates are in the range of 350 to 500 m³ /h per TR of refrigeration capacity.

With the installation of evaporative condenser, condensing temperature of 36°C can be achieved for the same cooling capacity. As a result, the compressor power will come down drastically at 4°C lower condensing temperature compared to existing condensing temperature of 40°C.

<u>Merits</u>

- Reduces fouling tendency.
- The air and water flow in a parallel path.
- Increased water flow over the coil.

- Evaporative cooling in the fill.
- Colder spray water.

Demerits

- High upfront cost.
- Requires system modification.

Cost Benefit Analysis

The expected electricity savings to be achieved by installation of evaporative condenser is INR 1.98 Lakh units annually. The annual monetary saving for this project is **INR 13.07 lakh, with an investment of INR 29.52 lakh, and a payback period of 27 months.**

Parameters	UOM	
Existing System - Measured	d	
Chiller Compressor Rating	kW	132.3
Power Consumption	kW	103
Evaporator Temperature	°C	-2
Condensing Temperature	°C	40
Condenser Heat Load Qo	TR	158.5
Condenser Pump Power	kW	17.71
Cooling Tower Fan Power	kW	5.4
Proposed System		
Design of new condenser with 25 % safety margin	TR	198.12
Evaporative Condenser Model available	TR	200
Evaporative Condenser Fan Power	kW	5.5
Evaporative Condenser Pump Power	kW	4
Energy Savings		
Total Auxiliary Power of Existing Condenser	kW	23.11
Total Auxiliary Power of Evaporative Condenser	kW	9.5
Savings in Auxiliary Power	kW	13.61
Current Compressor Power @ 40°C condenser temperature	kW	103
Compressor Power @ 36 ^o C condenser temperature (with installation of Evaporative Condenser)	kW	94

Table 28: Cost Benefit Analysis – Evaporative Condenser

Parameters	UOM	
Savings in Compressor Power due to reduction in condenser temperature	kW	9
Total Savings	kW	22.61
Power Cost	INR/kWh	6.6
Operating Hours	hrs/day	24
No of Days	days/year	365
Annual Energy Savings	kWh	198129
Annual Cost Savings	INR lakh	13.07
Investment for 200 TR evaporative condenser	INR lakh	29.52
Payback	months	27
IRR	%	63.79
NPV at 70 % Debt (12% rate)	INR lakh	52.75

Energy & GHG Savings

Vendor Details

Equipment Detail	Evaporative Condenser
	Supplier 1
Supplier Name	VINI Enterprise
Address	13, Nutan Patidar Society, Vallabhwadi, Maninagar, Ahmedabad-380008.
Contact Person	Mr. Saurin Dave
Mail Id	saurin@vinienterprise.com
Phone No	+91 97270 12111
	Supplier 2
Supplier Name	Frick India Ltd
Address	3rd Floor, Tiecicon House, Dr. E Moses Road, Jacob Circle, Dr E Moses Rd, Lower Parel, Mumbai
Contact Person	Mr Mohan Garud
Mail Id	mumbai@frickmail.com
Phone No	+91 9833994591

Table 29: Vendor Details – Evaporative Condenser

4.2.4 Falling Film Chiller (FFC)

Baseline Scenario

The unit is receiving milk from village level collection center and bulk milk coolers for processing at different temperatures. To meet the chilling requirement, the unit has installed refrigeration compressors of 450 TR capacity. During normal running conditions the base load of the plant is 300 TR and additional compressors runs based on load requirement. For chilled water generation three IBTs are used. The following table shows the performance of chiller compressors:

Parameters	UOM	
Compressor design Power	kW	360
Compressor design load	TR	450
Suction Pressure	kg/cm²	3.51
Discharge Pressure	kg/cm²	13.44
Discharge Temperature	°C	95
Evaporator Temperature	°C	-2
Condensing Temperature	°C	39
Operating Power	kW	332
Operating TR	TR	350
SEC	kW/TR	0.95

Table 30: Chiller compressor performance

The incoming milk is received at different temperatures as a result the load on the refrigeration system also fluctuates. The process return water to IBT from prechiller and other processes are also at high temperature which in turn increases the temperature of IBT. This results in higher chilled water temperature which leads to inefficient chilling of milk. The process return water from pasteurization process is at 7° C – 10°C and from pre chiller installed at raw milk reception is 12° C – 14° C due to high incoming temperature of milk. There is an unevenness in the return water temperature, and this is directly going to IBT tank. In the present condition, the average temperature maintained at IBT is 7° C to 10° C as a result the unit is facing difficulty to maintain 4 °C for milk dispatch. As a result, the unit is able to dispatch milk at only 5° C to 6° C. At the current situation the temperature the plant is getting is around 5° C – 6° C for milk dispatch and it is uneven. Because of this, load on the refrigeration plant is also increasing which results in higher SEC for chiller compressor.

Proposed System

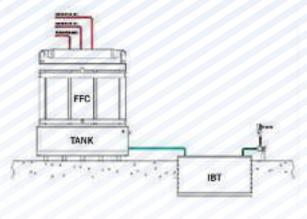


Figure 24: Falling film chiller

It is recommended to install falling film chiller before IBT to prechill the incoming process return water at higher temperature. FFC can instantly bring down the process return water temperature to 0.5°C to 1°C thus maintaining the IBT temperature less than 0.5°C all the time thereby reducing the chiller compressor load. The new system will improve the quality of chilled milk and milk products as IBT can continuously generate chilled water at lower temperature and hence meet the requirement of cooling the milk to 4°C.

Falling Film Chillers are suitable for continuous chilling of liquids close to their freezing point (i.e. water to o, 5°C). Also, viscous liquids, detergents, etc. and polluted liquids not easily handled in large quantity by conventional heat exchangers can all be chilled with the Falling Film Chiller. The water to be cooled is pumped into a distribution tank and as previously described the water is evenly distributed so that it falls as a continuous film over the cooling surface and into a base tank or directly over the product. The refrigerant runs through the pillow plate. It can be either a primary refrigerant such as ammonia, R134a, R22 etc. evaporating directly in the plate which can be circuited for dry expansion, flooded or pumped systems or as a secondary refrigerant such as glycol, brine or a similar heat transfer fluid.

When Using NH_3 as the refrigerant oil drains must be provided in the lowest point of the evaporator (liquid) supply. For flooded systems the separator liquid level must be a minimum of 0.5 m above the suction when using NH_3 and 1.0 m using R22. Using a falling film chiller with a DX system a suction gas heat exchanger is required if the temperature difference between refrigerant and water inlet is less than 10°C. This suction heat exchanger provides the gas superheat. The minimum evaporation temperature is: -3°C with water of 1°C and -2.5°C with water of 0.5°C. This is to prevent ice-build-up on the plates.

Conventional IBT often run at low evaporation temperatures which result in lowering of refrigeration capacity and higher power consumption vis a vis an FFC which runs at much higher evaporation temperature. The FFC being an open system also results in low or zero maintenance and therefore free from such botherations due to which the plant always maintains a high efficiency.

Sr. No	Falling Film Chiller	Plate Heat Exchanger
1	Water Chilling down to temperature as low as 0.5 °C	Not suitable for low water temperature applications
2	FFC allows the operation with polluted liquid as well	Not suitable for polluted liquid applications
3	In case of ice building on plates there is no damage to the plates	Plates get damaged during ice building
4	U value or efficiency of FFC remains same	Due to scale deposition the efficiency of PHE or U value decreases drastically. Needs frequent cleaning
5	Low or no maintenance and operating cost	Periodic maintenance which adds to operating costs
6	Design and operating parameters may vary based on load requirements	Design and operating parameters need to be same for low temp application because any change in operating parameters may result in heavy losses or damage of PHE
7	Low affinity of soiling, easy to clean	
8	No Gaskets	Require time to time change of gaskets
9	Flexibility of usage	Limitations of Usage

Demerits

- ✤ High upfront cost.
- Requires system modification.

Cost Benefit Analysis

The expected electricity savings to be achieved by installation of FFC is 5.04 lakh kWh annually. The annual monetary saving for this project is **INR 37.80 lakh, with an investment of INR 39.78 lakh, and a payback period of 13 months.**

Tuble 32: Cost benefit Analysis – Fulling Film Chiller			
Parameters	UOM	Option 1 - CHW supply from existing IBT system	Option - 2 CHW supply from dedicated FF chiller
Actual CHW Temperature requirement °C	°C	1	1
CHW supply temperature °C	°C	Varying due to incoming fluctuations in process water return temp of 10 - 14°C	1
Refrigeration load	TR	350	350
Power Consumption	kW	332	262

Table 32: Cost Benefit Analysis – Falling Film Chiller

Parameters	UOM	Option 1 - CHW supply from existing IBT system	Option - 2 CHW supply from dedicated FF chiller
Specific power	kW/TR	0.95	0.75
Operating days/annum	days	300	300
Operating hrs/day	hrs	24	24
Annual energy consumption	kWh	23,94,000	18,90,000
Annual electricity saving	kWh	5,04,000	
Power cost INR7.5/kWh	INR lakh	179.55	141.75
Annual cost saving	INR lakh	37.80	
Investment INR lakh 39.78		.78	
Payback	months	13	
IRR	%	121.28	
NPV at 70 % Debt (12% rate)	INR lakh	173.32	

Energy & GHG Savings

Reference Plant Implementation

Table 33: Reference Plant Implementation – Falling Film Chiller

Project Name	Installation of Falling Film Chiller
Objective	Installation of falling film chiller before the IBT to prechill the process return water
Installation Photo	

Project Name	Installation of Falling Film Chiller
Assumptions	 Rated TR 100 TR Operating TR Vary between 60 to 100 Tr Electricity Cost – Rs 8/kWh Annual operating hours – 5000 Hrs Compressor operating SEC – 1.25 kW/TR Process return water temperature - 12°C (before installation)
Savings (INR lakh)	₹9.50 lakh
Investment (INR lakh)	₹15.00 lakh
Simple Payback Period	20 months
Replication potential	In all the dairy units
Outcomes	 Reduction in SEC of 0.25 to 0.30 kW/TR Annual electricity savings of 1,25,000 units Able to generate water at 1°C continuously from IBT
Unit contact details	Mr Lalit Gupta Arvind Dairy, Charra, Aligarh Phone: 9911103034 Email: arvinddairypvt.ltd@gmail.com
Cluster Reference	Uttar Pradesh

Vendor Details

Table 34: Vendor Details – Falling Film Chiller

Equipment Detail	Falling Film Chiller
Supplier Name	Omega Ice Hill Pvt Ltd
Address	Omega Ice Hill Pvt Ltd 39, First Floor, Raghushree Market Near Ajmeri Gate, Delhi
Contact Person	Mr Abhishek Jindal
Mail Id	abhishek.jindal@omega-icehill.in

4.2.5 Energy efficient submersible agitators for IBT

Baseline Scenario

The unit has installed three reciprocating chiller compressors of 33 TR capacity each, for chilled water requirement in the plant. During morning time two compressors will be running to meet the process chilled water requirement and for cold store rooms. During night shift three compressors will be running to develop ice in the IBT and for the cold rooms. The unit has 3 IBT of 5000 litres capacity to generate chilled water at 0°C to 0.5°C, from where chilled water is drawn for cooling the stored milk before processing and after the pasteurization. The load on the plant keeps varying as milk is delivered from different sources at different point of times and at different temperatures.

In IBT the ice is formed over the ammonia tubes and water around this ice is drawn during the cooling needs. The ice around the ammonia tunes are expected to be crystal clear to possess good amount of latent heat so that ice lasts quite longer. The water in the tank if stagnant and has air/ gaseous substances, will form an opaque ice over the ammonia tubes which melts easily as it will have lesser latent heat. To ensure removal of entrapped air / gas from the water, a vertical agitator of 5 HP is used at one end of the IBT to push water into circulation.

Proposed System

It is recommended to replace the existing three vertical agitators with energy efficient submersible agitators of 1HP each. The sizing of the mixers is based on the tank dimensions

and effective volume of water to be circulated. The mixers are installed inside the tank with proper angles to the tank walls and at optimum heights from the tank bottom to ensure smooth uniform water circulation of water inside the tank. The net result is crystal clear ice formation over the ammonia tubes and with uniform thickness all around and length.

Figure 25: Submersible agitators

<u>Merits</u>

- Low power consumption.
- Uniform water circulation
- Ensure proper stirring of chilled water

Demerits

Investment cost

Cost Benefit Analysis

The expected electricity savings to be achieved by installation of submersible agitator is 0.77 lakh units annually. The annual monetary saving for this project is **INR 4.26 lakh, with an investment of INR 3.00 lakh, and a payback period of 8 months.**

Parameters	UOM	
Power consumption of old agitator	kW	3.7
Total power consumption of 3 agitators	kW	11.1
Power consumption of new agitator	kW	0.75
Total power consumption of 3 new agitators	kW	2.25
Total Power Savings	kW	8.85
Power Cost	INR/kWh	5.5
Operating Hours	hrs/day	24
No of Days	days/year	365
Annual Energy Savings	kWh	77,526
Annual Cost Savings	INR lakh	4.26
Investment for 3 agitators	INR lakh	3.00
Payback	months	8
IRR	%	170.95
NPV at 70 % Debt (12% rate)	INR lakh	20.21

Table 35: Cost Benefit Analysis – EE agitator for IBT

Energy & GHG Savings

Reference Plant Implementation

Project Name	Installation of EE submersible agitators
Objective	Replacement of 6 old agitators of 5.5 kW each with EE submersible agitators of 0.75 kW.
Unit profile	Sumul or Surat Milk Union Limited, which is now renamed as The Surat District Co-operative Milk Producers' Union Ltd, is one among the 17 district unions which acts as manufacturing units of dairy products for Gujarat Co- operative Milk Marketing Federation Limited, the marketers of Amul brand of products. The dairy has a daily average processing capacity of 15 lakh litres of milk per day.
Installation Photo	Soundue Summine Wren
Assumptions Made	 Electricity Cost – INR 5.5/kWh Operating hrs/day – 24 hrs Tank volume : 67 m³
Savings (INR lakh)	₹ 13.49 lakh
Investment (INR lakh)	₹10.50 lakh
Simple Payback Period	4 months
Replication potential	In all the dairy units having old vertical agitators
Outcomes	2.45 lakh units of electricity saved annually.
Unit contact details	Mr. AB Shah Sumul Dairy, Surat, Gujarat Mail Id: abs@sumul.coop Phone No: 099798 88018
Cluster Reference	Gujarat Dairy Cluster

Table 36: Reference implementation: Energy efficient agitators

Vendor Details

Table 37: Vendor Details – EE agitator

Equipment Detail	Submersible EE agitator	
Supplier Name	Grundfos Pumps India Pvt. Ltd.	
Address	3rd floor, Plot No 55 P, Sector 44, Gurugram, Haryana 122003	
Contact Person	Mr. Amit Kumar	
Mail Id	amkumar@grundfos.com	
Phone No	+91 9818866274	

4.2.6 Desuperheater for Compressors

Baseline Scenario

The unit has installed two reciprocating chillers of 33 TR capacity for the chilling requirement in the plant. One compressor runs continuously, and second compressor runs based on load requirement. For the refrigeration purpose, vapor compression-based ammonia cycle is used. In a refrigeration cycle, when the compressor runs, the refrigerant starts flowing through the system. The compressor continuously sucks low pressure, low temperature refrigerant vapors from the evaporator and pumps it to the condenser at a high pressure and temperature. While flowing through the condenser, the high temperature vapors release their heat to the atmosphere and condense to a high-pressure liquid state. After condenser, this high-pressure liquid enters the expansion valve where it is throttled to a low pressure. On throttling, the pressure and temperature of the refrigerant decrease, and when this low pressure, low temperature throttled liquid flows through the evaporator, it sucks heat and produces cooling. On absorbing heat in the evaporator, all the low-pressure liquid evaporates to low-pressure, low-temperature vapors, which are again sucked by the compressor. In this way, all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator.

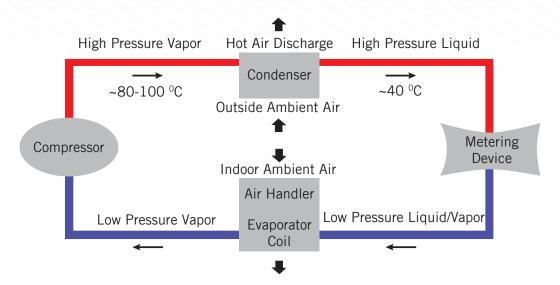


Figure 26: Vapor Compression Cycle

Refrigeration plants with air-cooled and water-cooled condensers produce a lot of waste energy by dumping the condensation energy to the ambient air. By installing a de-superheater, a large proportion of this waste energy can be turned into hot water, which can be used for many applications such as:

- ✤ CIP.
- Boiler feedwater heating.
- Process heating for processes like curd and Ghee preparation.
- Crate washing and can washing in chilling centers.

Proposed System

It is recommended to install Desuperheater on discharge side of chiller compressors to recover the waste heat of ammonia gas. The temperature of NH₃ gas will be around 100°C, which can be cooled to 60°C, and the recovered heat can be used for heating water from ambient to 70°C. The design should ensure that adequate heat is recovered with the required temperature lift. Apart from the direct energy saving after getting hot water, the heat load on condenser is expected to come down, and if the design is done appropriately, the condensing pressures can also marginally reduce, leading to reduction in power consumption of compressors. Desuperheater units are located between the compressor and condenser to utilize the hightemperature energy of the superheated refrigerant gas. By using a separate heat exchanger to utilize the high temperature of the discharge gas, it is possible to heat water to a higher temperature than would be possible in a condenser. Key technical parameters for the heat recovery system are given below:

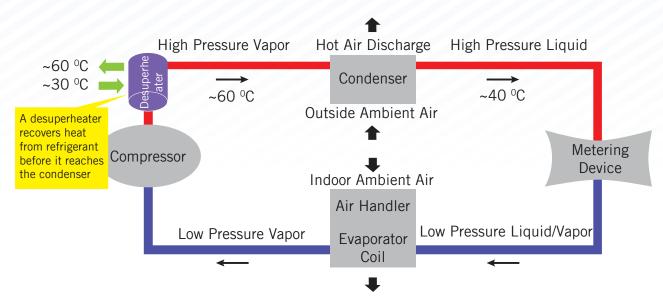


Figure 27: WHR from chiller compressor

Table 38: Key technical parameters of Desuperheater

Item	Value
Temperature of ammonia gas in/out	100°C/60°C
Temperature of water in/out	30°C/70°C
Amount of water that can be heated	294 litre/hr
Heat load recovered	16.4 kW

Cost Benefit Analysis

The expected fuel savings to be achieved by installation of de-superheater is 0.25 Lakh kg of briquette annually. The annual monetary saving for this project is **INR 1.73 lakh, with an investment of INR 4.84 lakh, and a payback period of 34 months.**

Parameters	UOM	
Size of compressor	kW	41
Heat Recovery possible	kW	16.4
Heat Recovery possible	kJ/hr	59,011
Amount of hot water available for process (from 30 to 70° C)	litre per hour of water at 70° C	294
Hours of operation	hours per day	15
Days of operation	days per year	365
Cost of Briquette	INR/kg	6.7
Calorific value	kJ/kg	77,023
Boiler efficiency	%	68%
Fuel Savings	kg/year	25,809
Annual Cost Savings	INR lakh	1.73
Investment	INR lakh	4.84
Payback	months	34
IRR	%	52.98
NPV at 70% Debt (12% rate)	INR lakh	6.55

Table 39: Cost Benefit Analysis – Installation of Desuperheater

¹For 15kW of refrigeration load 6 kW heat recovery possible

Energy & GHG Savings

Reference Plant Implementation

Project Name	Installation of De-Superheater
Objective	Installation of de-superheater to preheat boiler feed water from the superheated refrigerant gas.
Dairy profile	Ernakulam Dairy, a unit under Ernakulam Regional Co-operative Milk Producers' Unions (ERCMPU) of MILMA, has its plant at Thrippunithura, Ernakulam, Kerala, and offers pasteurized Vitamin A-enriched milk and various milk-based products, such as butter, curd, ghee and Sambharam throughout the State.
Installation Photo	
Assumptions	 Fuel Cost – INR 7/kg GCV – 18,409 kJ/kg Annual operating hrs - 5475 Feed water temperature – 30°C Boiler efficiency – 0.70
Savings (INR lakh)	₹ 5.08 lakh
Investment (INR lakh)	₹ 16 lakh
Simple Payback Period	36 months
Replication potential	In all the dairy units, BMC and MCCs irrespective of size
Outcomes	 13.27 kg/hr of briquette saved Temperature of hot water achieved – 60°C 30.50 TOE of annual energy savings Increase in feed water temperature
Unit contact details	Mr. Babu Varghese Milma Ernakulam Dairy Thrippunithura P.O. Ernakulam – 682101, Kerala Phone: 0484-2780103 Email: ernakulamdairy@yahoo.co.in
Cluster Reference	Kerala Dairy Cluster

Table 40: Reference Plant Implementation - De-superheater

Vendor Details

Table 41: Vendor details – De-superheater for Compressors

Equipment Detail	Desuperheater	
Supplier Name	Promethean Energy Pvt Ltd	
Address	Akshar Blue Chip IT Park, Turbhe MIDC, Turbhe, Navi Mumbai: 400706	
Contact Person	Mr. Ashwin KP	
Mail Id	ashwinkp@prometheanenergy.com	
Phone No	+91 9167516848	

MILK

4.2.7 kVAr Energy Compensator for Chiller Compressor

Baseline Scenario

The unit has installed three reciprocating chiller compressors of 60 TR capacity each for the chilled water requirement in the plant. During normal operation two compressors are running continuously and third compressor runs based on demand. The table below shows the electrical parameters of chiller compressor:

1	able 42: Electrical part	ameters		
Compressor Name	Volt	Current	Power	PF
Chiller Compressor 1	407	119	73.1	0.87
Chiller Compressor 2	408	121	74	0.85

Table (a. Electrical par

Both the compressors are running without VFD and operating at a PF of 0.86. The unit has installed a capacitor bank at the source for the central compensation of PF at the plant level. For induction motor to operate it requires reactive current from the source for producing the magnetization effect. More the reactive current drawn from the supply higher will be the distribution losses across the feeder. It is always better to provide the reactive current locally to reduce the distribution losses in the plant.

Proposed System

It is recommended to install a reactive current injector locally near to the load end to reduce the reactive current drawn from the supply. An innovative product called kVAr compensator can be installed near to load end to improve the PF of motor and thereby reduce the magnetization current drawn from supply. The kVAr compensator works by reclaiming, storing and then supplying locally the reactive power element of electricity to inductive motors and loads. As the electrical equipment operates, this reactive power is 'pulled and pushed' to and from the kVAr compensator by the motor. Reactive power is then recycled by the kVAr compensator which can supply it on the spot without having to draw it from the grid. This leads to reduction in electric demand and improvement in the power factor and thus, the operating costs.

Figure 28: kVAr energy compensator

From a technical point of view this is the best solution, as the reactive energy is produced at the point where it is consumed. Heat distribution losses (I²R) are therefore reduced in all the lines, resulting in real power reduction. The kVAr required for the motor to maintain the PF close to unity is found out by using a sizing kit. It helps in fixing and selecting the correct size of kVAr unit required to make the inductive load wok in most efficient way.

Merits

- Reduce distribution losses across the infrastructure that translates into cost savings
- Reduce kW Demand charge the motor draws and frees capacity in the electric distribution system up extra space in supply panel
- Improve voltage regulation and phase imbalance due to reduced voltage drop
- Reduce operating cost of machinery
- Improve Power Factor of an Induction Motor
- Works on all line-start and soft-start inductive loads such as motors, compressors, pumps, chillers, fans, blowers, etc.
- Customized unit built for each load after real-time monitoring and testing procedures.

Limitations

It's not suitable for chillers with VFD.

Cost Benefit Analysis

The expected electricity savings to be achieved by installation of kVAr compensator is 46,570 units annually. The annual monetary saving for this project is **INR 2.56 lakh, with an investment of INR 4.20 lakh, and a payback period of 20 months.**

Table 43: Cost Benefit Analysis – kVAr Energy Compensator

Parameters	UOM	
Total power consumption of chiller	kW	147
Guaranteed power savings	%	4
Power savings	kW	5.88
Operating hrs	hrs	24
Operating days	Days	330
Electricity Price	INR/kWh	6.00
Annual electricity savings	kWh	46,570
Annual cost savings	INR lakh	2.56
Investment	INR lakh	4.20

Parameters	UOM	
Payback	months	20
IRR	%	83.57
NPV at 70 % Debt (12% rate)	INR lakh	11.06

Energy & GHG Savings

Annual	Annual	Annual
Electricity	Energy	GHG
Savings	Savings	Savings
46,570	4.00	38.19
units	TOE	T CO ₂

Reference Plant Implementation

Table 44: Reference Plant Implementation – kVAr Compensator

Project Name	Installation of kVAr Compensator
Objective	Installation of kVAr compensator to reduce the energy losses.
Installation Photo	
Assumptions	 Electricity Cost – INR 6.65 /kWh Operating hrs – 20 hrs/day
Savings (INR lakh)	₹ 1.22 lakh
Investment (INR lakh)	₹1.01 lakh
Simple Payback Period	10 months
Replication potential	In all the dairy units having chiller compressor without VFD
Outcomes	 Annual electricity savings – 18,496 Improvement in PF
Unit contact details	Mr. D. Manikyala Rao, Neuland Labs Ltd.
Cluster Reference	Hyderabad Pharma Cluster

Vendor Details

Equipment Detail	kVAr Energy Compensator
Supplier Name	Athena CleanTech
Address	1904, Haware Infotech Park, Sector 30A, Vashi, Navi Mumbai
Contact Person	Mr. Sanjeev Reddy
Mail Id	sanjeev@cleantech.com.sg
Phone No	+91 9440259863

Table 45: Vendor Details – kVAr Energy Compensator

4.2.8 VFD for chilled water pumps

Baseline Scenario

The unit has installed four chilled water pumps of 10 HP each for pumping chilled water from IBT to process. During normal operation, three pumps are in operation. The flow requirement to different processes varies in the range of 1000 to 2500 LPH. The chilled water is used in different processes viz. Milk chiller, Ice cream & Butter Milk processing, AC's etc. The IBT is maintained at 0.1 to 0.5°C. After the process the return water is coming at 6°C to 8°C. The figure below shows the schematic of chilled water system in the plant. The total discharge line from the pumping system is of 180mm dia over a required length upto 500m & hence the line losses are not so high. The existing layout is shown below:

Figure 29: Existing pumping layout

The current operating practice in the plant is to operate the pumps such that the discharge pressure of 2 kg/cm^2 is available & the maximum flow of 2500 LPM is maintained. For these required conditions, one pump operates at its full load operating conditions & the other two pumps are manually controlled for the required pressure & flow conditions.

Proposed System

The best possible solution for this condition is to install VFD in one of the pumps & operate the other two pumps in fully open conditions. The required system pressure will be given as feedback to the VFD based on which the required flow can be obtained. The overall savings here will be in terms of higher operating efficiency of one pump & lower RPM for the operation of the third pump.

The pump with VFD will also ensure minimum recirculation under conditions when the system is under no load condition

Merits

- Higher operating efficiencies
- Reduced power consumption
- Optimum flow & head

Limitations

- Higher installation costs
- May require system stoppage during installation

Cost Benefit Analysis

NPV at 70 % Debt

The expected electricity savings to be achieved by installation of VFD for chilled water pump is 24,000 units annually. The annual monetary saving for this project is **INR 0.96 lakh, with an investment of INR 0.50 lakh, and a payback period of 06 months.**

UOM **Parameters** Present Proposed kW **Power Consumption** 22 18 LPM Flow 1000 - 2500 1000 - 2500 Head m 30 25 **Overall Efficiency** % 65 72 **Power Savings** kW 4 **Electricity Cost** INR/kWh 4 Operating hrs hrs/day 20 **Energy Savings** kWh 24000 Cost Savings INR lakhs 0.96 INR lakhs Investment 0.50 Months Payback 6 % IRR 4.64

INR Lakh

222.60

Energy & GHG Savings

Reference Plant Implementation

Table 47: Reference Plant Implementation – VFD for chilled water pump

Project Name	VFD for chilled water pump
Objective	Replaced old system for chilled water circulation contains one 10 hp pump and one 15 hp pump by new VFD controlled pumping system in which one 7.5 hp pump is directly coupled with VFD and other four more pumps of 7.5 hp each used to get the required rate of flow.
Unit Profile	Kozhikode dairy under MRCMPU Ltd has an average daily procurement of raw milk-6 Lakh L and with an average daily sale of processed milk-5Lakh L. Other products- Curd, Ghee, Peda, Butter, Butter milk, Ice cream, Palada, Burfi etc
Installation Photo	
Assumptions	 Electricity Cost – INR 5.50 /kWh Operating hrs – 20 hrs/day
Savings (INR lakh)	₹ 2.45 lakh
Investment (INR lakh)	₹ 19.42 lakh
Simple Payback Period	97 months
Replication potential	In all the dairy units
Outcomes	 Annual electricity savings – 44,712 Smooth control of pumps
Unit contact details	Mr. Shaji Mon Dairy Manager Kozhikode Dairy, MRCMPU region Mail Id: kkddairy@malabarmilma.coop Phone No: 04952800331
Cluster Reference	Kerala Cluster

Vendor Details

Table 48: Vendor Details – VFD for chilled water pump

Equipment Detail	VFD for chilled water pump
Supplier Name	Danfoss Industries Ltd
Address	703,7th Floor, Kaivanya Complex, Near Panchwati Cross Road, Ambawadi, Ahmedabad
Contact Person	Mr. Srihari Vyas
Mail Id	Shrihari@danfoss.com

4.2.9 Direct Cooling Method – IBT

Baseline Scenario

A dairy unit in Pune has a Milk Processing Facility. VATS Cooling is maintained by conventional IBT Tank provided with all civil constructed wall (except bottom side) thermal insulation. While top face of tank open and covered by wooden planks supported on MS angle fabricated support structure. IBT is basically a thermal storage system which is bulky in nature that utilizes old technology of ice bank with agitator.

IBT Tank Cooling source from Ammonia Based refrigeration plant 70 TR – (KC3 & MX 300), Ammonia evaporation on (-10) to (-15 °C). Mechanical stirrers (agitator) are provided (one in each section of IBT tank) for creating forced circulation inside IBT tank for uniform cooling of water inside IBT Tank. IBT tank is used in refrigeration system for making ice during off peak hours and using this thermal stored energy during peak hours. The charging of the IBT tank is done almost 20 hrs. to 24 hrs/day depending on Product quantity received and ambient conditions.

Operating efficiency analysis (Existing loss study)

The energy consumption is much higher than the estimated required energy. The specific energy consumption in summer is about 50-60% more than that of winter Condensing Pressures are higher in summer and hence Condensing Temperatures are about 5 °C higher in summer. Energy consumption is 10% higher for 5 °C higher condensing Ice Bank System have poor charging and discharging characteristics, it increases energy consumption Stirrer adds to the energy consumed. The compressors operate much longer, especially in the summer. This also adds to cooling tower load and hence inefficient chiller operation.

In summer, recorded Cooled Product temperature was much higher as system is not able to meet the cooling demand. It is estimated that it fell short by 20%. Ice Bank system is not getting charged to optimum level and not able to discharge when required. Theoretical energy consumption estimates are much lower than the actual consumption; hence there is a scope of incorporating Direct Cooling using PHE Chiller System to improve the performance of the system and to achieve better cooling throughout the year.

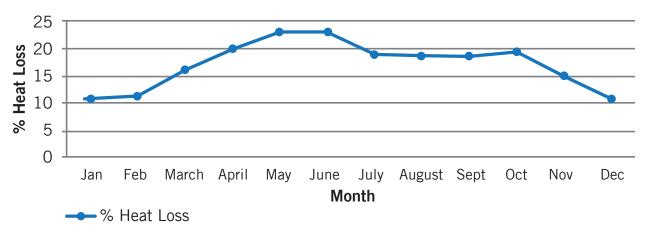


Figure 30: Typical operating efficiency analysis for different seasons

Proposed System

The Proposed System is designed for direct cooling of constant requirement of chilled water at process 1.0 – 1.5 °C, Direct Cooling PHE Evaporator will have Primary and Secondary circuit to avoid the freezing of Process Water. New design Direct Cooling Method Ammonia Compressor, Suction Pressure 2-2.5 kg/cm² to Evaporative Condenser to maintain condensing temp at 35 °C. HPR will supply ammonia at 8-10 kg/cm² to PHE Evaporator. PHE Evaporator will have ammonia Thermal expansion valve modulation base upon chilled water supply Temp. Primary circuit of PHE Evaporator will transfer the Cooling load at (-0.3 °C) on Secondary side of PHE Chiller, Process Chilled Water 4-5 °C will be continued circulation with help of Low Temp Pumps. To Cater the Load requirement of Process 1.0 -1.5 °C, the Process return water will be fed through the secondary side of PHE Evaporator which will have Temperature controller along with 3 Way valve to maintain the output temp of 1.0 – 1.5 °C.

<u>Merits</u>

- Low Energy Consumption at ammonia compressor due to higher suction pressure
- Closed looped system, No Cooling Loss or additional of external heat from ambient
- Capacity augmentation Existing installed refrigeration plant will able to cater more production.



Figure 31: Post Implementation – Direct Cooling Method

<u>Limitations</u>

- Automation required on existing system.
- Estimation of proper cooling load.
- Minimum cooling load required to maintain stable suction pressure.

Cost Benefit Analysis

The estimated electrical savings to be achieved by installation of Direct Cooling method of 3.20 lacs Units per annum. The annual monetary saving for this project is **INR 27 lakh, with an investment of INR 70 lakh, and a payback period of 30 months.**

Table 49:	Cost Be	nefit And	alysis –	Direct	Cooling	in IBT
-----------	---------	-----------	----------	--------	---------	--------

Parameters	UOM	Value
Existing refrigeration plant capacity	TR	70
Suction pressure	kg/cm ²	1-0.8
Ammonia evaporation temp	°C	-15
IBT Supply temp	°C	1.0 -1.5
Sp. Energy consumption	kW/TR	1.11
Existing Electrical energy consumption	kWh/month	89,385
Addition of new refrigeration capacity	TR	100
Total TR	TR	170
New suction pressure	kg/cm²	2.5
Ammonia Evaporation temp	°C	-5
Sp. Energy consumption	kW/TR	0.8
IBT supply temp	°C	1
New electrical consumption with additional capacity	kWh/month	62,517
Total units saved	kWh/month	26,868
Annual electrical savings	kWh	3,22,000
Monetary savings	INR lakh	27.0
Investment	INR lakh	70.0
Payback	months	31
IRR	%	56.63
NPV at 70 % Debt (12% rate)	INR lakh	104.77

Energy & GHG Savings

Vendor Details

Equipment Detail	Direct Cooling Method
Supplier Name	Honeywell Automation – Energy services
Address	56 & 57, Hadapsar Industrial Estate, Pune
Contact Person	Hari Mohan Singh
Mail Id	hari.singh@honeywell.com
Phone No	9011186665

Table 50: Vendor details – Direct Cooling in IBT

4.2.10 Thermal Energy Storage for BMC

Baseline Scenario

Milk is one of the most nourishing food in the world. Milk contains numerous nutrients and makes a significant contribution in meeting the human body's needs for calcium, riboflavin, magnesium, selenium, vitamin B12 and pantothenic acid (vitamin B5). It is also one of the few consistent income sources for farmers. However, as soon as milk leaves the udder of mammal, the bacteria in it start multiplying exponentially, which deteriorates the quality of milk by converting the lactose or sugar in the milk into lactic acid. It curdles the proteins and causes souring.

The hygienic quality of fresh milk is determined by milk handling practices at the milk producer level and the cooling practices at the milk collection centers. Poor-quality of milk at the collection level cannot be corrected further up the dairy value chain. Therefore, it is very important that cooling should be done within one/one-and-half hour of milking, after which the naturally occurring preservatives in the milk (including carbon dioxide) stop working.

Figure 32: Dairy Value Chain

Dairies currently use bulk cooling tanks to cool their milk to about 4 degree Celsius at their procurement centers. These tanks, of 1000-5000 litres capacity, keep the milk chilled till the tanker from the dairy arrives. These systems are designed as per ISO standards of cooling half of the rated bulk milk capacity to 4°C within 3 hours. Such standards work well for developed nations where milk production and cooling are co-located at the same vicinity. For India specific milk collection process, such coolers have following major drawbacks::

Table 51: Bacterial growth factor with milk temperature

Raw milk storage temperature (°C) for a period of 18 hours	Bacterial growth factor*
0	1.00
5	1.05
10	1.80
15	10.00
20	200.00
25	1,20,000.00

- An average Indian farmer deliver less than 10L of milk per day. Insufficient milk collection in a village to cater a single bulk cooler, forces milk cooperatives to collect milk from nearby villages through milk societies. Uncooled milk collected from multiple societies is transported to a centralized bulk cooler before milk cooling process can be even initiated. This entire process results in delayed and bulk arrival of milk at bulk cooler sites. Thus, milk is exposed to higher temperatures for a longer duration.
- Bulk coolers mostly operate at suboptimal capacity as there exist large variation in milk quantity production between lean and flush seasons. If these are undersized, cooling takes longer time. If these are oversized, the minimum milk requirement (typically ~15% of the tank volume) to start cooling process increases. Milk quality deteriorate in both the cases.
- Bulk coolers require the electric back-up via diesel generator set as electric grid supply is not reliable. It results in increased operational expenses and environmental pollution. In addition, Diesel generator associated with these coolers are oversized by up to 5 times the rated power of compressor just to handle the startup surge requirements. It results in additional diesel consumption due to part load operation.

Proposed System

Instant milk cooler is based on its thermal energy storage technology. It uses vapor compression cycle to convert electric energy into ice. This ice is later used to provide cooling without the need of grid availability during cooling process. Similar concepts of providing instantaneous cooling have been used at larger chilling centers with capacity of 10,000 L/day or beyond. Efforts to miniaturize those systems have not been successful, simply because operating conditions and economics are totally different at small scale. It is an add-on to bulk cooler sites with following primary objectives:

- Delink the availability of grid supply and milk cooling requirement to minimize and even eliminate diesel generator.
- Eliminate the need of minimum milk quantity requirement of 15% of bulk cooler rated capacity to start the milk cooling process.
- Increase the cooling rates by 3 times to eliminate the impact of milk production variability on bulk cooler cooling capacities.
- Instant cooling of milk to reduce the overall time milk is subjected to elevated temperatures.

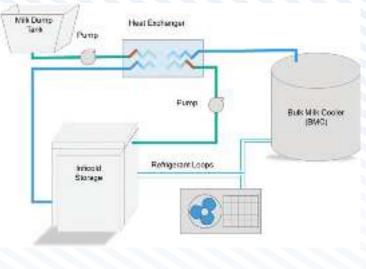
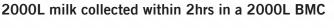



Figure 33: Schematic layout for Instant Milk Choller

it to 4-7°C. The milk flow rates are user adjustable in the range of 250-1,500 litre/hr. The outlet milk temperature is flow and quality dependent. The outlet temperature is 3-4°C milk outlet with milk flowrate of 250 L/hr; 5-7°C milk outlet with milk flowrate of 500 L/hr; and 8-10°C with milk flowrate of 1,000 L/hr, respectively. The energy storage in the ice bank tank is about 200 MJ.

The graph in the figure below compares the cooling provided by a standalone 2,000 L bulk milk cooler with a combination of instant milk cooler and 2,000 L bulk milk cooler. Milk flow rates used for the comparison were 1,000 litres per hour, and the total 2,000 litres of milk was collected. At the end of the test, average temperature of milk collected in the tank was 4°C in both cases. Average time for which milk was exposed to temperatures above 10°C is significantly higher

Instant milk cooler consists of an efficient ice bank tank, milk

pump, plate heat exchanger and balance tank. Instant milk cooler automatically recharges its ice storage levels whenever grid power

is available irrespective of the milk cooling requirements. It takes

around 6-7 hours to fully charge

the system with a single-phase grid supply. Milk is poured in the balance tank from where it is pumped in the plate heat exchanger to instant cool

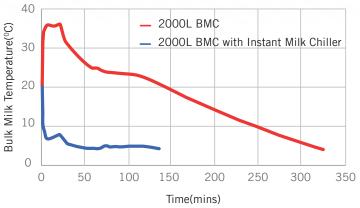


Figure 34: Cooling time with and without instant milk Chiller

with standalone 2,000 L bulk milk cooler. Since milk coming out of instant milk cooler is never above 10°C, the freshness and aroma of milk is maintained, and a great value addition is achieved.

Merits

- Improves milk quality from typical 50 mins to 120 mins of Methylene Blue Dye Reduction Test (MBDRT).
- Eliminates usage of diesel generator for up to 1,500 litres of milk collection in a shift when the system is fully charged with ice.
- Can be used to enhance the capacity of an existing bulk milk cooler by handling cooling

Technology Compendium - Haryana Dairy Cluster 104 load of up to 1,500 litres of milk in a shift without availability of any source of power.

- Instant milk improves the milk quality, and makes milk eligible for ultra-high temperature processing, which increases the sale value of the milk.
- Farmers at the installed pilot site have already started receiving INR 1/L. The extra income generation for the farmers is not considered in the payback analysis as it also depends on other milk handling practices. Assuming higher quality milk generates extra profit of INR 1 per litre, payback period is less than 6 months.

Limitations

IMC is highly beneficial only when the dependence of BMC on Diesel Generator (DG) sets for power is high.

Cost Benefit Analysis

The expected fuel savings to be achieved by installing instant milk cooler in conjunction with a 2000L Bulk milk cooler is 3.28 kL/year of Diesel, which translates to annual monetary savings of INR 1.73 Lakh and a value generation due to improved quality of milk is Rs 1/litre which translates to INR 7.30 lakh/annum & with a total investment of INR 4 lakh, and a payback period of 6 months.

Parameters	UOM	
Milk processed	kL/shift	1
	kL/day	2
	kL/annum	730
Average Power consumption by compressor of 2000L Bulk milk cooler	kW	5.6
Average Cooling duration of 2000L milk in bulk milk cooler	hrs/day	6
	hrs/annum	2190
Power Cut	%	50
Fuel Cost (HSD)	INR/ litres	64
Electricity cost (Grid power)	INR/ kWh	6
Total DG runtime	hrs/ day	3
	hrs/ annum	1,095.0
GCV of HSD	kcal/ kg	11,840
Density of HSD	kg/ m ³	826.3
HSD consumption for DG	litres/ hr	3

Parameters	UOM	
	kg/ annum	2,714.4
Thermal energy consumption from HSD	Mkcal/ annum	32.1
	TOE/ annum	3.2
	GJ/ annum	134.5
HSD savings	litres/ annum	3,285.0
Annual Cost Savings on Diesel	INR lakh/ annum	1.73
Value generation due to improved quality of milk	INR/litre	1.00
	INR lakh/ annum	7.30
Investment	INR lakh	4.00
Simple Payback	months	6
IRR	%	246.13
NPV at 70 % Debt (12% rate)	INR lakh	41.74

Energy & GHG Savings

Reference Plant Implementation

Table 53: Reference	Plant Implementation -	Instant Milk Chiller
---------------------	------------------------	----------------------

Project Name	Installation of Instant Milk Coolers	
Objective	Improvement of milk quality and reduction of operational energy expenditure by instant milk cooling.	
Dairy profile	The milk collection had an installation of 2 units of 1,000 L bulk milk cooler along with 2 units of 10kVA diesel generator. 1 unit of instant milk cooler was installed at the site.	

Project Name	Installation of Instant Milk Coolers		
Installation Photo			
Assumptions Made	 Average % Power outage – 18% Average daily milk collection – 2,000 L 		
Savings (INR lakh)	₹60,000 per annum on diesel + ₹7,30,000 per annum on improved milk quality.		
Investment (INR lakh)	₹4,00,000		
Simple Payback Period	6 months		
Replication potential	In all the BMCs		
Outcomes	 Annual Fuel savings – 1,242 litres of diesel. Annual GHG reduction – 1,837 kg. Milk quality has improved and is now eligible for UHT production. Usage of diesel generator has been eliminated. 		

Vendor Details

Table 54: Vendor Details – Instant Milk Cooler

Equipment Detail	Instant Milk Cooler	
Supplier Name	Inficold India Private Limited	
Address	G-21, Sector 11, Noida – 201301, Uttar Pradesh, India.	
Contact Person	Dr. Nitin Goel	
Email Id	ng@inficold.com	
Phone No	+91-9873518652	

4.2.11 BMC Remote Monitoring System

Baseline Scenario

Milk is procured from remote village farmers and societies (collection centre) are established for this purpose. Upon receipt of milk, it is expected to be chilled immediately to 4 °C. Else milk quality will be degraded on account of microbial multiplication. For this reason, chilling centres are put in place at feasible locations. Milk were chilled to 4 °C at the chilling centres till it is lifted by the dairy tankers. The dairy union has installed 78 Bulk Milk Coolers and are located remotely at a distance of 50-70 Km. The 78 BMC's are divided into 21 routes. 21 different milk tankers go and lift the milk from these 78 BMC's and bring it to dairy for further processing. Each centre has a BMC technician to look after the collection and proper chilling. Total chilling capacity of the union is 100 TLPD. There are 78 Bulk Milk Coolers, 386 Automatic Milk Collection in the union. The union procures on an average 4.44 lakh kg/day of milk and sells 2.42 lakh litres/per day.

Methylene Blue Dye reduction test is used in Dairy industry to judge the quality of milk. Better MBRT fetches better price as it can be used to make other premium products. In MBRT test 1 ml of Methylene blue dye solution is added to 10 ml of milk sample. The colour of the solution turns blue. The blue solution is kept under a water bath at 37°C. This time is noted. Then frequently the solution is observed. The time at which the solution turns colour less is noted. The time interval for turning colourless from blue is the value of MBRT in min. The milk is rated as per below table:

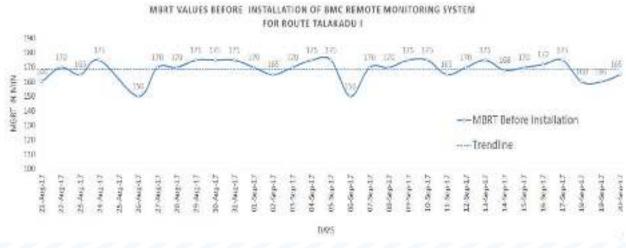
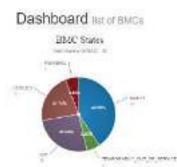

MBRT Value in min	Rating
300 min and above	Very Good
180 – 240 min	Good
60- 120 min	Fair
30 min or Less	Poor

Table 55: Milk rating as per MBRT

The union wanted to have an insight into the operation of the BMC. This was required for procuring better quality of milk. The only way is to get reports from the BMC Technicians. The reports required lot of human efforts and is prone to errors. More over the technicians were mostly villagers and were not much to count on. Hence there is a need for automation to avoid the errors.

The lifting temperature and volume of milk of each BMC (Bulk Milk Cooler) from each chilling centre was observed and noted. On arrival at the dairy again the arrival temperature was noted down. MBRT test was performed on the samples received and its values were also noted. Below is the graphical representation (refer figure 35 below) of MBRT on a daily basis for one of the routes till before the installation of BMC Remote Monitoring System. As can be seen from the graph the line in blue represent the MBRT value in min on a daily basis from start date of study till the date of installation. It can be seen that the lowest value of MBRT is 150 min and highest is 175 min. The average value is around 170 min. For approximately a month the MBRT data was captured for all the routes.



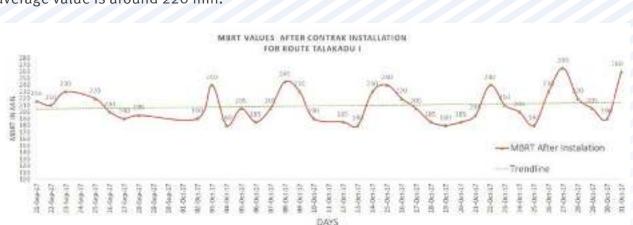
Proposed System

BMC Remoted Monitoring System has been installed one by one at respective sites. The feedback data was made available from remote sites. After BMC Monitoring system was online different type of alerts can be generated and sent. The alerts are categorized into two:

- Info Alerts like the Power On/Off, DG On/Off, Agitator On/Off, CIP (Clean in place), Chilling start/stop.
- Critical Alerts like the DG-Grid-both on, Turn on Chilling, Over-Cooling, CIP Undetected, Lifting at High temperature.

a.					(Seat)	
Regue	Horan	Location	Cutenviataile	Mills available	Temperature	Detaile
8840, 2268	INVERSE NO.	succentryparts increase	6004	Max	18.8	>
1840.2087	O B seraul normal	CO D GARNER MARCHA	Erde	No	29.1	*
1005_2161	Corpodeficiantial reprod	Gergadah contra fil vrymal	ETTY	Mis	23.5	3
met your	Regards Forma	Indiffuence from	Out of annoon	No state		
BHO 2371	Individuality mining	Know and early internal	CP ²	Mo	12.5	>

Figure 36: Dashboard list of BMCs


Figure 37: Chilling graph

The data from remote monitoring system is closely monitored and analyzed as shown below:

- BMC's prepared reports related to the Diesel Generator (DG) fuel Consumption. Running hours of the DG is calculated using hour meter for the complete month. Using the consumption rate the fuel consumed for the month is calculated. This Data was read visà-vis the data from the BMC Remote Monitoring System to ensure effective usage of DG. It ensured not using of DG when power was not available and thereby saving on the fuel cost.
- Volume lifted at site as per the challan is compared with the volume data available from the BMC Remote Monitoring system. This data is then cross verified with the actual volume measured at dairy plant to check for inconsistencies.
- Several reports were prepared on the MBRT, lifting temperature, fat & SNF values of milk from all the routes. Lifting temperature data in the challan is compared with the data from the BMC Remote Monitoring System. and was correlated with the milk temperature on arrival at dairy plant. Corrective measures were taken to ensure milk temperature on arrival was between 4°C & 6°C.

After the installations, below is the graphical representation (Refer Figure 38 below) of MBRT vs time for the same route considered above. As can be seen from the graph the line in red represent the MBRT value in min on a daily basis from the date of installation for a period of

1 month. It can be seen that the lowest value of MBRT is 180 min and highest is 265 min. The average value is around 220 min.

Figure 38: MBRT after installation of remote monitoring system

It can be seen from the graph that the MBRT value is on an increasing trend. From an average value of 170 min of MBRT it has rose to an average value of 220 which is an increase of 50 min. This indicates improvement in milk quality. This means that a smaller number of rejections of potential revenue and more revenue realizations. Increased MBRT of milk through BMC Remote monitoring solution has helped dairy companies to enter premium milk products (UHT milk etc.) which also adds to the revenue realizations. Operations cost were reduced because of fuel/power savings by better monitoring. With remote monitoring, also number of technicians required were reduced. Thus, increase in realization per litre of milk and reduced cost of operations helped milk union to ensure ROI within six months.

Merits:

- Quantity mismatch from BMC in terms of tanker volume and procured volume can be reduced significantly. This was due to the reduced pilferage or in-accurate Dip Stick for milk quantity measurements.
- Diesel consumption for chilling can be reported more accurately. Actual number of hours of chilling based on DG can be reported accurately and hence diesel consumption is tracked at central location.
- BMC capacity utilization has been improving as the volume is monitored centrally, and route managers are directing milk to emptier BMCs, and also manage tanker routes optimally.
- Availability of monitoring parameters for proper chilling from remote place to a central location, made possible and data analytics to identify the shortcomings for the proper chilling made

Demerit

Investment Cost

Cost Benefit Analysis

The expected savings by installation of Remote Monitoring System for **BMC is INR 3.27 per litre chilled with an investment of INR 0.06 per litre for a ConTrak setup.**

Parameters	Value INR
Revenue increment per litre due to improved quality & reduction of rejection	3.00
Cost savings per litre due to energy consumption reduction	0.055
Cost savings per litre due to reduction in manpower	0.10
Cost savings per litre due to preventive maintenance	0.00657
Cost savings per litre on Cleaning in place	0.12
Cost savings per litre on pilferage reduction	0.048
Per litre benefits due to ConTrak setup	3.33
Per litre cost of ConTrak setup	0.06
Net Benefits per litre	3.27

Vendor Details

Equipment Detail	BMC Remote Monitoring System
Supplier Name	Stellaps Technologies Pvt Ltd
Address	No 46/4, Novel Tech Park, 3rd Floor, Hosur Rd, near Kudlu Gate, Garvebhavi Palya, Bengaluru
Contact Person	Mr. Nikhil Raj
Email Id	nikhil.raj@stellapps.com
Phone No	9846878283

4.3 Case Studies – Utilities

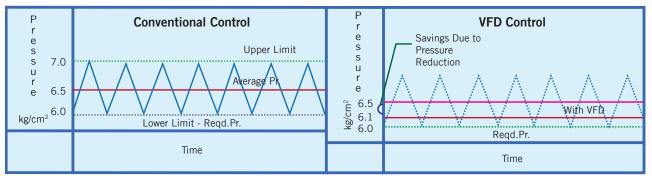
4.3.1 VFD for air Compressor

Baseline Scenario

The dairy unit under consideration has installed 15 kW screw compressor to cater the requirements in the process & instrumentation section. The maximum working pressure of the compressed air in the system is in the range of 6-7 kg/cm². The operating characteristics of the compressor is as shown,

Tabla	-0.	Dlant	compressor	loading	nattorn
Tuble	50:	гит	compressor	louung	pullem

Tag No.	Load %	Unload %	Load power, kW	Unload power, kW
Plant air compressor	36	64	17.5	6.6


It can be seen that the loading % of the compressor is only 36%, indicating a potential to install for VFD installation in the compressor. During the time compressor goes into unload mode, there is no useful work done. Also, since the compressor is of screw type, the losses during unloading is higher in comparison to that for a reciprocating system.

Concept of VFD

Any compressor is design to go into load & unload conditions. The load & unload pressures for any compressed air system is set such that the average pressure delivered will be the required system pressure. The higher set point of the compressor therefore is a loss.

Also, in the present scenario, the installed compressor is of much higher capacity than compared to the system requirement, which is clear from the 64% unload that the compressor is operating with.

In these two conditions, the most suitable option is to go for a variable frequency drive (VFD). The difference between the normal & VFD condition in a compressor is as shown,

Figure 39 Capacity control of compressor

As it can be seen from the figure, the VFD can be given a set point equal to that which is required in the system. The additional power that the compressor consumes over the required pressure will be the savings achieved.

Proposed System

It is recommended to install VFD and operate that with closed loop for all the above listed compressor to avoid the unloading of the compressor. The feedback for VFD can be given as required receiver pressure. By installing VFD the compressor can be operated in a pressure bandwidth of ±0.1 bar. Saving potential of 4.2 kW is available by means of installation of VFD in the Main plant air compressor.

<u>Merits</u>

- Reduced fluctuations in pressure.
- Ease of operation.
- Reliability.

Limitations

- Viable only up to 40% unload situations.
- Maintenance issues.
- Space constraints.

Cost Benefit Analysis

The expected savings by installation of VFD in the compressor is 18247 units annually. The annual monetary saving for this project is **INR 1.03 lakh with an investment of INR 0.90 lakh and payback for the project is 11 months.**

Table 59: Cost Benefit Analysis- VFD for Air Compressor

Parameters	UOM	Value
Unloading power of compressor	kW	6.6
Percentage unloading	%	64
Power savings	kW	4.2
Annual operating hours	hrs	4,320
Annual energy savings	kWh	18,247
Power cost	INR/kWh	5.65
Annual savings	INR lakh	1.03
Investment	INR lakh	0.9
Payback	months	11
TOE savings	TOE	1.57
TCO ₂ savings	T CO ₂	14.96

Parame	UOM	Value	
IRR		%	142.02
NPV at 70 % Debt (12% rate)		INR lakh	4.81
ergy & GHG Save	Annual Energy Savings		Annual GHG Savings
18,247 units	1.57 TOE		14.96 T CO ₂

Vendor Details

Table 60: Vendor Details – VFD for Air Compressor

Equipment Detail	VFD for compressors
Supplier Name	Danfoss Industries Ltd
Address	703,7th Floor, Kaivanya Complex,Near Panchwati Cross Road
Ambawadi, Ahmedabad	
Contact Person	Mr. Srihari Vyas
Email Id	Shrihari@danfoss.com
Phone No	9825024991

4.3.2 Energy Efficient Pumps

Baseline Scenario

The unit has installed two chilled water pumps for pumping chilled water from IBT to process, of which one is running and the other one is on standby. The chilled water is used in pasteurization process and pre-chiller, where the milk is cooled to 4°C. Chilled water required for the various processes is pumped using two pumps of 5.5 kW capacity each. After the process, the return water is coming at 6°C-8°C. The figure below shows the schematic of chilled water system in the plant:

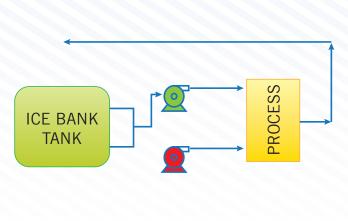


Figure 40: Chilled Water Pumping Systems

Proposed System

It is recommended to replace the old chilled water pump with energy efficient pump. The highly efficient pump will consume less power than low efficiency pumps, which will lead to energy saving. Energy efficient pumps offer higher efficiency than conventional pumps and consume less power, thereby leading to significant energy savings. The new pumps installed have an overall efficiency of 53%. The pump - system curve is illustrated graphically as shown. The point The design efficiency of the pump is 39%, which is very low, and the measured efficiency is 31%, which is lower than the design efficiency. The reasons for low efficiency of pump are:

- Poor operational practices.
- Pump is very old and undergone frequent maintenance.
- Poor selection of pump.

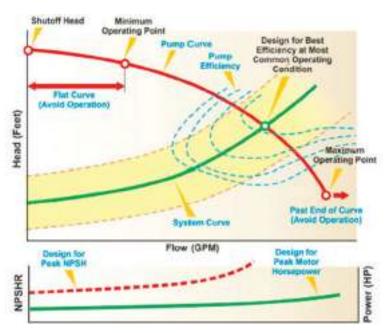


Figure 41: Pump Characteristic Curve

where the system and the pump curve meet is known as the Best Efficiency Point (BEP). The operating efficiency is highest and the radial bearing loads are lowest for a pump at this point. At or near its BEP, a pump operates most cost effectively in terms of both energy efficiency and

maintenance. In practical applications, operating a pump continuously at its BEP is not likely, because pumping systems usually have changing flow rate and system head requirements and demands. Selecting a pump with a BEP that is close to the system's normal operating range can result in significant operating cost savings.

Merits

- Higher operating efficiencies.
- Reduced power consumption.
- Optimum flow & head.

Limitations

- High installation cost.
- May require system stoppage during installation.

Cost Benefit Analysis

The expected energy savings to be achieved by installation of new energy efficient pumps is 17,520 units annually. The annual monetary saving for this project is **INR 0.70 lakh, with an investment of INR 0.98 lakh, and a payback period of 17 months.**

Parameters	UOM	Present	Proposed
Power Consumption	kW	6	4.5
Flow	m³/hr	15.5	16
Head	m	40	45
Efficiency	%	35	51
Power Savings	kW	1.	5
Electricity Cost	INR/kWh	2	i -
Operating hrs	hrs/day	8.	00
Energy Savings	kWh	17,5	520
Cost Savings	INR lakh	0.	70
Investment	INR lakh	0.	98
Payback	months	1	7
IRR	%	66	.74
NPV at 70 % Debt (12% rate)	INR lakh	2.	34

Table 61: Cost Benefit Analysis – Energy Efficient Pump

Energy & GHG Savings

Reference Plant Implementation

Table 62: Reference Plant Installation: Energy Efficient Pump Sets

Project Name	Installation of energy efficient pupms		
Objective	Replacement of old chilled water pumps with energy efficient pumps		
Unit profile	Trivandrum dairy - a unit under Thiruvananthapuram Regional Co-operative Milk Producers' Unions (TRCMPU) of MILMA, having its plant at Ambalathara, Trivandrum, Kerala, offers pasteurized Vitamin A enriched milk and various milk-based products such as Butter, Ghee, Paneer, Curd, buttermilk and ice cream throughout the state.		
Installation Photo			
Assumptions Made	 Electricity Cost : 6 INR/kWh Operating hrs : 14 hrs/day Old Pump Efficiency : 42 		
Savings (INR lakh)	₹ 1.39		
Investment (INR lakh)	₹2.20		
Simple Payback Period	19 months		
Replication potential	All dairies irrespective of size		

Project Name	Installation of energy efficient pupms
Outcomes	 Efficiency of pump: 53 % Power Savings: 4.52 kW 1.99 TOE of annual energy savings. Carbon footprint reduction of 18.48 TCO₂ per year.
Unit contact details	Mr. Balasubramony G Trivandrum Dairy Ambalathara, Poonthura.P.O, Thiruvananthapuram – Kerala Phone: 9633802195 Email: milmatdengg@gmail.com
Cluster Reference	Kerala

4.3.3 Package Type Biogas Reactor

Baseline Scenario

The unit has a canteen catering food to around 600 employees. Currently, for all cooking purposes, biogas from ETP and Liquid Petroleum Gas (LPG) is used as fuel. The average amount of food waste generated per day from the canteen is 500 kg. It is disposed of outside.

However, the canteen waste being organic in nature and high in organic content, can be converted into biogas and manure, using an anaerobic digestion process. The anaerobic digestion process would address two aspects: generation of non-fossil fuel-based energy, and the avoidance of waste going to landfill. The biogas generated can be further purified and can substitute the use of LPG in the canteen. The manure generated from the process can be used for gardening. Recently, there have been many developments in biogas digestion technologies, and the economics have also improved substantially. With rising fossil fuel prices, especially that of LPG, the installation of bio-digesters to generate biogas can be a good substitute for conventional energy and would result in both environmental and cost benefits for the company.

Proposed System

The most commonly used models are fixed dome reactors, floating drum reactors, and, of late, there has been development of a few mild steel-based digesters. There has not been much innovation in design during the last several years. With old designs, the usage of mild steel and concrete also adds up to the cost of the digester. One of the main challenges has been developing digesters with simplicity in operation and maintenance. Mild steel digesters have major challenges, such as rusting due to H₂S content in the biogas, and exposure to wet weather conditions, among other problems.

It is recommended to install biogas plant, which is a fabric-based biogas technology, for processing the 500 kg of food waste produced daily. This technology would process all the canteen waste generated inside the plant, which is a better alternative to disposing of it outside.

Figure 42: Fabric used for biogas

The schematic layout of the proposed system is given below:

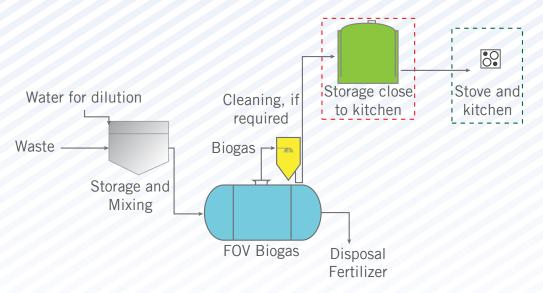


Figure 43: Layout of FOV Biogas Technology

The biogas plant will be initially loaded with active inoculum to start the process. After the initial loading is complete, the 500 kg of food waste is mixed with 500 litres of water to reach a slurry form by feeding in a crusher. The slurry will be fed in to a feeding tank. The organic waste from the feeding tank will be fed into a 50 m³ biogas reactor. The reactor will have 30 m³ liquid space, and rest 20 m³ as gas storage space. The additional gas generated can be stored in a gas holder. About 1 m³ of diluted organic waste in a slurry form will be fed into the reactor every day. The excess liquid slurry coming out of the digester can be re-circulated as replacement for fresh water.

On an average, the reactor will have a 30-day retention time. Under optimized running conditions, the biogas plant will generate about 50 m³ of biogas per day. The feeding and digestate collection is a continuous process. The biogas generated will be piped to the kitchen and used for cooking by using biogas burners. The total area required for the biogas plant is about 80 m² of space. The design of the biogas plant can be adjusted according to space availability.

Benefits of new system

- Plug and flow digester (no settlement of sludge, natural mixing of organic waste).
- Low operations and maintenance costs.
- No rusting, unlike other designs, which are made of mild steel for digester tanks and for gas collection.
- No moving parts used for feeding, mixing and sludge outflow, since all the operations are based on natural gravity-based process. Very low captive power consumption for operating the digester.
- In-built gas space at the top of digester, which can hold up to 50% of total gas generated.
- Highest material quality.

Limitations

- High investment cost.
- Continuous availability of feed to reactor.

Cost Benefit Analysis

The expected energy savings to be achieved by installation of biogas technology is 9,000 kg of LPG annually, with energy reduction of 10.65 TOE/year. The annual monetary saving for this project is INR 4.79 lakh, with an investment of **INR 11.12 lakh, and a simple payback period of 27 months.**

Parameters	UOM	Existing System	Proposed System
Canteen waste generated per day	kg	500	500
LPG used per day	kg	25	NIL
Gas Potential from 500 kg waste	m³/day	50	50
Operating days/annum		360	360
Annual Energy Savings	kg LPG	-	9,000
LPG Cost	INR/kg	53.23	53.23
Annual Cost Savings	INR/lakh	4.79	
Investment	INR/lakh	11.12	
Payback	months	27	
IRR	%	62.31	
NPV at 70 % Debt (12% rate)	INR lakh	19.19	

Table 63: Cost Benefit Analysis – Biogas Reactor Systems

Energy & GHG Savings

Reference Plant Implementation

Project Name	Installation of Biogas Reactor
Objective	Installation of 500 kg/day biogas plant to process food waste from canteen, pizza wastes and solid waste, and generate energy for cooking in canteen.
Unit profile	Amul Fed Dairy is a large-scale dairy unit located at Gandhinagar, Gujarat. The various products manufactured in AFDG dairy are liquid milk, butter milk, flavored milk, lassi, ghee and ice cream, with an average milk processing capacity of 32 lakh LPD.
Installation Photo	
Assumptions Made	 Canteen waste generated per day is 500 kg. Operating days – 360 Gas potential is 50 m³/day LPG cost – INR 53.23/kg
Savings (INR lakh)	INR 4.79
nvestment (INR lakh)	INR 11.12
Simple Payback Period	28 months
Replication Potential	In all large dairy units (> 10 lakh LPD) and cattle farms
Outcomes	 25 kg per day LPG savings of monthly energy saving 10.66 TOE of annual energy savings 26.82 t CO₂ reduction per year
Unit contact details	Mr. Prashant Seth Amul Fed Dairy Plot No 35, Gandhinagar Ahmedabad Road ,Bhat , Gujarat Phone: 07574802084 Email: prashant.sheth@amul.coop
Cluster Reference	Gujarat Dairy Cluster

Table 64: Reference Plant Implementation – Biogas Reactor

4.3.4 Methane Capture from dairy effluents

Baseline Scenario

The unit has installed a 300 kLPD ETP plant to treat the effluents from various processes, the effluents generated from various sections of the production facilities are first received in a collection tank. Before mixing in an equalization tank, the effluents are passed through a fat trap unit. The low-density semi-solids, which float in the tank and contain fats, proteins, packing materials, etc., are known as 'dairy effluent scum' and are removed manually. After removing the dairy effluent scum (top layer), the effluents are further treated in aerobic or anaerobic conditions. The characteristics of dairy effluent scum vary with the products being produced in the plant and their relative proportion, as well as the methods of the operation used. The process involved is as below:

- Equalization tank for collection of raw effluent generated from plant for homogenization of the quantity and quality.
- Anaerobic biological treatment for removal of most of the suspended and dissolved organic impurities – it includes an Upflow Anaerobic Sludge Blanket (UASB) reactor followed by a settling tank.
- Aerobic biological treatment unit for polishing of aerobically treated effluent to achieve statutory disposal norms – It includes an aeration tank followed by a settling tank.
- Polishing treatment units: For further purification of treated effluent It includes a duel media pressure filter, an Activated Carbon Filter, a Micron Filtration System, an Ultrafiltration system and a Reverse Osmosis system.

Sr. No.	Parameter	Raw Effluent	After Anaerobic	Treated Effluent
1	Effluent flow rate	300 m³/day	300 m³/day	300 m³/day
2	рН	4.0 - 9.0	7.0 – 8.5	7.0 - 8.5
3	Temperature	< 40° C	< 35° C	< 35° C
4	Chemical Oxygen demand (COD)	4,000 mg/l	< 600 mg/l	< 100 mg/l
5	Biochemical Oxygen demand (BOD)	2,500 mg/l	< 200 mg/l	< 30 mg/l
6	Oil & Grease	50 mg/l	< 20 mg/l	< 10 mg/l
7	Total Suspended Solids	500 mg/l	< 150 mg/l	< 50 mg/l

Table 65: Effluent Characteristics

Effluent Characteristics:

The wastewater generated from the unit will have various pollutants which exert high BOD and COD load. From the above table it is observed that incoming dairy effluent has a BOD of 2,500 mg/l and COD of 4,000 mg/l, which after treatment is reduced to less than 30 mg/l and 100 mg/l respectively.

Current Treatment Process:

The raw effluent 300 m³/day from different trade activities flows to ETP by gravity. It first gets collected in equalization tank for homogenization of the quantity and quality. Acid/ Alkali solution is added to neutralize the effluent, if required. Homogenized and neutralized effluent from equalization tank is pumped @15 m³/h to UASB reactor bottom and distributed uniformly through the inlet distribution system. It passes upwards through the dense anaerobic sludge bed. Organic matter is rapidly utilized by biomass and converted to methane rich biogas. Upward circulation of water and biogas purging from the bottom of the reactor keeps the biomass in suspension and breaks any scum formation. The three-phase separator at the top of the UASB reactor allows effective degasification to occur. The dense, granular sludge particles, devoid of attached gas bubbles, sink back to the bottom establishing a return downwards circulation. The treated effluent flows into collection channels at the top of the settlers for discharge and transferred to the clarifier - 1. Washed out anaerobic biomass is recovered and recycled to the reactor. Excess biomass from Anaerobic Process is wasted to sludge dewatering system, if required. Biogas is collected in gas collection portion of three phase separator at the top of the reactor and transferred to a waste gas burner. Aerobically treated effluent is transferred to aeration tank. A culture of aerobic bacteria decomposes organic impurities in to CO₂. A coarse bubble aeration grid is provided to supply O₂ to aerobic bacterial culture. Air is supplied by the same twin lobe air compressor system. Treated effluent flows through the clarifier - 2 to retain bacterial culture. The heavy biomass flocs get settled in the bottom and clear treated effluent flows into outlet channel. Aerobically treated effluent is collected in a treated effluent collection sump, it is pumped to Duel media pressure filter for polishing. Reclaimed water will be suitable for irrigation or feeding to softener for reuse in boiler and cooling tower.

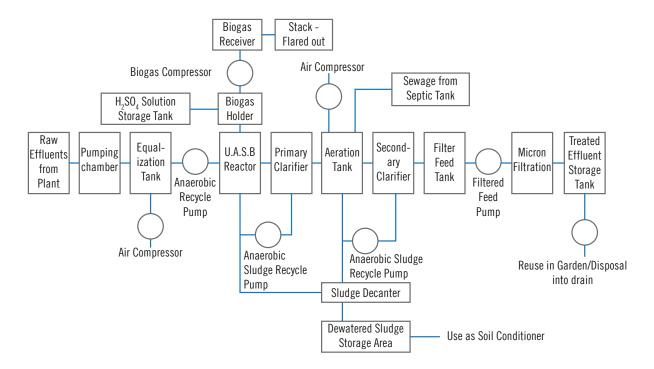


Figure 44: ETP Treatment Process

Currently the Biogas generated from the ETP is flared out through stack. Total biogas generated is $400-425 \text{ m}^3/\text{d}$ at design loading of $300 \text{ m}^3/\text{d}$ effluent flow and 4,000 mg/l COD, which has a C.F. value equivalent to $23,430 \text{ kJ/m}^3$.

Proposed System

It is recommended to install biogas engine with generator to produce electricity from biogas rather than flaring it out. Biogas production will be continuous and for 24 hours a day. The organic fraction of the solid waste has been recognized as a valuable resource that can be converted into useful products using microbes. Anaerobic digestion is a well-established technology for treatment of organic wastes. Biodegradation of the organic wastes in the absence of oxygen produces biogas, which is a mixture of methane and carbon dioxide as major components and traces of hydrogen, ammonia, hydrogen sulphide, etc. Biogas can be used for thermal applications, such as water heating, drying, boiler fuel, etc., or for electricity generation. The digested material available after the anaerobic treatment may be used as a soil conditioner after composting/ vermicomposting. Dual benefits reaped using anaerobic digestion processes for organic solid waste are simultaneous removal of organic pollutants and waste stabilization as well as production of renewable energy in the form of biogas.

The biogas holder will have about 1 m³ storage volume. This biogas will be transferred to biogas holder for intermediate storage. Then the gas will be pumped through a compressor and stored in a biogas capsule. It will be then used in the biogas engine. The estimated potential of generation is 90-950 kWh/day, which is around 40 kW generation considering a generator efficiency of 37% and gas availability of 85%.

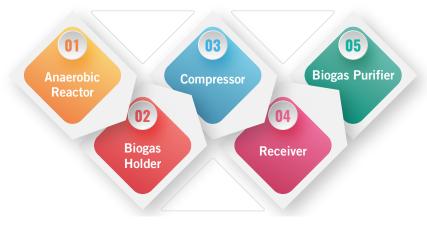


Figure 45: Biogas Generation and Utilization Process

Benefits of new system

- Proper disposal of dairy effluents leads to arresting release of methane to atmosphere.
- Capturing methane from effluents provides an alternative source of energy.

<u>Limitations</u>

High investment cost.

Cost Benefit Analysis

The expected electricity savings by 40 kW Biogas power generator is 2,51,989 kWh annually. The annual monetary saving for this project is **INR 16.12 lakh, with an investment of INR 31.86 lakh, and a simple payback period of 24 months**.

Parameters	UOM	
COD Inlet	mg/l	4,000
COD after anaerobic Digestion and before polishing	mg/l	600
Flow	m³/day	300
COD Reduction	mg/lit	3,400
CH4 Generation Potential	m ³ /kg COD	0.4
CH4 Generation per day	m³/day	408
GCV	kJ/m³	23,430
Energy Generation per day	kJ/day	95,59,603
Generator Efficiency	%	35
Power Generation	kW	38.74
Biogas Availability	%	85.00
No of operating hours	hrs/day	24
No of days	days/year	365
Annual Electricity Generation	kWh	2,88,489
Annual Auxiliary Power Consumption @ 100 units per day	kWh	36,500
Total Electricity Generation	kWh/year	2,51,989
Electricity Cost	INR/kWh	6.4
Annual Savings	INR lakh	16.12
Investment	INR lakh	31.86
Payback	months	24
IRR	%	71.44
NPV at 70 % Debt (12% rate)	INR lakh	67.14

Table 66: Cost Benefit Analysis – Biogas Power Generator

Energy & GHG Savings

Reference Plant Implementation

Table 67: Reference Plant Implementation – Biogas Utilization

Project Name	Methane capture from dairy effluents
Objective	To capture methane from dairy effluents and used as a fuel
Unit profile	Amul Fed Dairy is a large-scale dairy unit located at Gandhinagar, Gujarat. The various products manufactured in AFDG dairy are liquid milk, butter milk, flavored milk, lassi, ghee and ice cream with an average milk processing capacity of 32 lakh LPD.
Installation Photo	-
Assumptions Made	 COD load per day – 13,600 kg/day Operating days – 360 GCV of biogas – 25,104 kJ/m³ Gas potential is 50 m³/day NG cost – INR 28/m³
Savings (INR lakh)	INR 288 lakh
Investment (INR lakh)	INR 250 lakh
Simple Payback Period	11 months
Replication Potential	In all large dairy units (> 10 lakh LPD) and cattle farms
Outcomes	 2,874 m³/day natural gas equivalent biogas generation. 864 TOE of annual energy savings. 459 T CO₂ reduction per year.
Unit contact details	Mr. Prashant Seth Amul Fed Dairy Plot No 35, Gandhinagar, Ahmedabad Road, Bhat, Gujarat Phone: 07574802084, Email: prashant.sheth@amul.coop
Cluster Reference	Gujarat Dairy Cluster

Vendor Details

Equipment Detail	Biogas Power Generator
	Supplier 1
Supplier Name	Environponics Solutions Pvt Ltd
Address	9, New Natraj Park Society, Bopal Ghuma Road, Bopal, Near India Colony, Bopal, Ahmedabad, Gujarat 380058
Contact Person	Mr. Deep Modi
Mail Id	environponics@yahoo.com
Phone No	+91 9825021159
	Supplier 2
Supplier Name	Sun Enviro Technologies Pvt Ltd
Address	Ashok Colony, Plot No. 22, Near Union Bank, Pratap Nagar, Nagpur - 440 025
Contact Person	Ms. Prachi Doye
Mail Id	sunenviro@sunenv.com
Phone No	+91-712-2282608
	Supplier 3 (Biogas to Bio CNG)
Supplier Name	Atmos Power
Address	39/3B & 39/8B, Nana Chiloda Rd, Phase 3, GIDC Naroda, Ahmedabad, Gujarat 382330
Contact Person	Mr Navneet
Mail Id	mkt@atmospower.net
Phone No	+91 9099903701

4.4 Case Studies – Process Area

4.4.1 Installation of High Regenerating Efficiency Pasteurizer

Baseline Scenario

A 2.20 Lakh LPD plant was utilizing old pasteurization with regenerative efficiency of 84%. The plant had various products such as skim milk, curd, CIP, crate washing system, etc. The heating process of the pasteurizers is done with the help of steam. The generation pressure of steam is 8.5 kg/cm^2 and is utilized in various locations of the plant. The pasteurization was done at a temperature of 77° C with a holding time of 15 seconds. A hot water is heated first with a direct heating system from steam. The hot water is later used for CIP process. The steam utilized at pasteurization is 3 kg/cm^2 .

In HTST pasteurization regenerative preheating is given to the incoming whole milk. After the preheating section the milk is taken through the separator wherein the cream is separated. The skim milk is then taken through heating with an external medium, to a desired temperature along with the required holding time. After which the milk passes through the regenerative cooling section and cooling through external medium. The schematic of the pasteurization process is provided in the figure below.

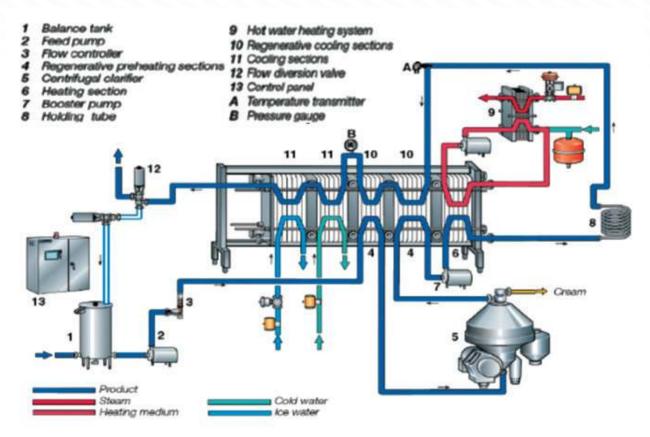


Figure 46: Pasteurization process

The temperatures at different section of the pasteurizer is mentioned in table . The temperatures in the table show for a pasteurizer with 84% regeneration. In this plant briquette fired boiler is used with a pressure generation of 8.5 kg/cm² and with boiler operating at an efficiency of 75%.

Proposed System

The design comparison of an 84% and high regeneration pasteurization of 93% is provided in the table below. The temperature of the hot water utilized to heat the milk is working with a temperature difference of 12°C. The plant team explored the opportunity with high efficiency pasteurizer with a temperature difference of 4°C, significantly reducing the quantity of steam used for heating. The new 93% regenerative pasteurizer has a wider gap for heat exchange and will occupy higher area in comparison to standard 84% regeneration pasteurizer. The high regeneration pasteurizer not only reduces the requirement of external hot water for heating, but also reduces the chilled water requirement in the plant.

Table 69: Comparison sheet					
Media	Parameter	84% Regeneration Pasteurizer		93% Regeneration Pasteurizer	
		Temperature °C	Flow rate LPH	Temperature °C	Flow rate LPH
Chilled water	Outlet	4	20000	4	20000
Chilled water	Inlet	1.5	30000	2	20000
llaturator	Outlet	70	10000	78	10000
Hot water	Inlet	83	12000	82	12000
PAST. Milk	Outlet	4		4	
Milk	Inlet	80		80	
Milk(External heating with hot water)	Outlet	80		80	
Milk	Inlet	72		75	
Milk(2 nd Stage Preheating)	Outlet	72	10000	75	10000
Milk	Inlet	45		61	
Milk(1 st Stage Preheating)	Outlet	45		61	
Raw milk	Inlet	4		4	

<u>Merits</u>

- Reduction in hot water and chilled water requirement
- Better heat transfer

Limitations

- High investment
- Requires pasteurizer shutdown

Cost Benefit Analysis

The annual monetary savings to be achieved by installation of high regenerative pasteurizer is **INR 16.19 lakhs, with an investment of INR 15.00 lakhs, and a payback period of 11 months.**

Parameters	UOM	84% Regeneration Pasteurizer	93% Regeneration Pasteurizer	Savings due to regeneration pasteurizer
Heating requirement from hot water	kJ/h	6,52,704	6,52,704	3,51,456
Cooling requirement from chiller	kJ/h(TR)	3,13,800 (24.8TR)	1,67,360 (13.23 TR)	1,46,440
Energy consumption of hot water taking 75% boiler efficiency	kJ/h	8,70,272	2,67,776	6,02,496
Energy consumption of chilled water system considering 0.9 kW/ TR being consumed by the chiller	kW	22.30	11.90	10.40
Annual operating hours	hrs	8000.00	8000.00	
Annual thermal heat requirement	million kJ	52,216	24,099	28,116
Annual electrical chilling	lakh kWh	1.78	0.95	0.83
Cost of thermal energy	INR/million kCal	1667.00	1667.00	0.00
Cost of electrical energy	INR/kWh	6.00	6.00	0.00
Annual Cost of thermal energy consumed	INR lakhs	20.80	9.60	11.20
Annual Cost of electrical energy consumed	INR lakhs	10.70	5.71	4.99
Total cost of energy consumed	INR lakhs	31.51	15.31	16.19
Total savings with 93% regeneration pasteurizer	INR lakhs		16.19	
Investment for high regenerative pasteurizer	INR lakhs		15	
Payback period	months		11	
IRR	%		176.34	
NPV at 70 % Debt (12% rate)			77.00	

Table 70: Cost Benefit Analysis – High regenerative efficiency pasteurizer

Energy & GHG Savings

Vendor Details

Table 71: Vendor details - High regenerative pasteurizer

Equipment Detail	Regenerative pasteurizer
Supplier Name	Alfa laval
Address	Alfa laval India Pvt Ltd Besides Kayes school, Secunderabad 500025
Contact Person	Mr. Vamshi Gaddam
Email Id	Vamshi.gaddam@alfalaval.com
Phone No	9948054222

4.5 Case Studies - Renewable Energy

4.5.1 Solar rooftop system

Baseline Scenario

The unit is purchasing electricity from grid for the power requirement in its plant. The contract demand of the plant is 260 kVA, with electricity priced at INR 7.0/kWh, with an average load of 150 kW to 200 kW. The unit has enough rooftop area which can be utilized to install solar PV for self-generation of electricity rather than purchasing from grid. The site specifications for rooftop PV are given below:

Table 72: Site S	pecification – for Solar PV
Parameters	
Effective Rooftop available	200 sqm true south
Location	Latitude: - 30.35° N, Longitude: - 76.75° E
Altitude above sea level, m	264 m
Direct Normal Irradiance	4.66 kWh/m²/day
Wind	2.22 m/sec
Humidity	70%

The following graphs highlights solar irradiance:

Ambala, Haryana Latitude: 30.35 Longitude: 76.75 Annual Average : 4.66 kWh/m²/day

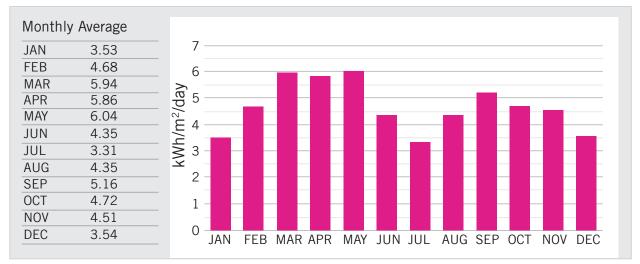


Figure 47: Solar Irradiance

Proposed System

As per the site specifications, the unit has a potential of installing 25 kWp solar rooftop which can generate around 0.40 lakh units of electricity annually. The proposed system will be a Grid connected Solar PV power plant consisting Solar Photo-voltaic (SPV) array, Module Mounting Structure, Power Conditioning Unit (PCU) consisting of Maximum Power Point Tracker (MPPT), Inverter, and Controls & Protections, interconnect cables, junction boxes, distribution boxes and switches. PV Array is mounted on a suitable structure. Grid-tied Solar Photo-voltaic (SPV) system is without battery and should be designed with necessary features to supplement the grid power during daytime. In grid-connected rooftop or small Solar Photo-voltaic (SPV) system, the DC power generated from Solar Photo-voltaic (SPV) panel is converted to AC power using power converter, and is fed to the grid either of 33 kV/11 kV three phase lines or of 440V/220V three/single phase line, depending on the local technical and legal requirements. These systems generate power during the daytime, which is utilized by powering captive loads and feeding excess power to the grid. In case the power generated is not sufficient, the captive loads are served by drawing power from the grid.

Net Metering Business Model - The net metering-based rooftop solar projects facilitate the selfconsumption of electricity generated by the rooftop project and allows for feeding the surplus into the grid network of the distribution by the licensee. The type of ownership structure for installation of such net metering-based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. In a grid-connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback on the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yield. A commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand. The features/ requirements for Grid Connected Rooftop Solar PV System are as follows:

S. No.	Features / Requirements	Values
1	Shadow free roof area required	10 sq. m or 100 sq. ft per kWp
2	Roof suitable for Solar PV system	Concrete / GI / tin shed (Asbestos may not be suitable)
3	Orientation of the roof	 South facing roof is most suitable Installation may not be feasible beyond 5 deg slope
4	Module installation	 Modules are installed facing South Inclination of modules should be equal / closer to the latitude of the location for maximum energy generation

Table 73: Features/requirements for Grid Connected Solar PV Systems (Rooftop)

S. No.	Features / Requirements	Values
5	Cost of the rooftop solar PV system	 MNRE issues benchmark cost for Grid Connected Rooftop (GCRT), Solar Photovoltaic (SPV) system and the cost for general category states for 2019-20 are as follows. This includes cost of the equipment, installation and O&M services for a period of 5 years. Above 1 kWp and upto 10 kWp: RS 54,000 / kWp Above 10 kWp and upto 100 kWp: RS 48,000 / kWp Above 100 kWp and upto 500 kWp: RS 45,000 / kWp Based on discussion with few project developers, average cost of the system (as per market conditions) are as follows: For 10 kWp system, RS 49,000 / kWp For 50 kWp system, RS 42,500 / kWp For 100 kWp system, RS 37,000 / kWp
6	Useful life of the system	25 years

Merits

- PV panels provide clean & green energy. During electricity generation with PV panels, there
 is no harmful greenhouse gas emissions.
- Technology development in solar power industry is constantly advancing, which can result in lower installation costs in the future.
- PV panels have no mechanically moving parts, except in cases of sun-tracking mechanical bases; consequently, they have far less breakages or require less maintenance than other renewable energy systems (e.g. wind turbines).

Limitations

- The initial cost of purchasing a solar PV system is high, which includes paying for solar panels, inverter, batteries, and wiring and for the installation.
- Although solar energy can be still collected during cloudy and rainy days, the efficiency of the system drops, which results in lower generation of energy.
- Installing a large PV system takes up a lot of space.

Cost Benefit Analysis

The expected savings by installation of 25 kWp solar rooftop is 40,000 units of electricity annually. The annual monetary saving for this project is **INR 2.60 lakh, with an investment of INR 19.00 lakh, and a payback period of 7 years.**

Table 74: Cost Benefit Analysis – Solar PV Systems

Parameters	UOM	
Proposed Rooftop Solar installation	kW	25
Annual units generation per kW of Solar PV	kWh per kW/year	1,600
Total Energy Generation Per Annum	kWh/year	40,000
Electricity Cost	INR/kWh	7
Cost Savings	INR lakh	2.60
Investment	INR lakh	19.06
Payback period	years	7
IRR	%	19.81
NPV at 70 % Debt (12% rate)	INR lakh	4.45

Energy & GHG Savings

Reference Plant Implementation

Table 75: Reference Plant Implementation – Solar PV Systems

Project Name	Installation of 170 kWp solar PV system
Objective	Installation of 170 kWp grid connected solar rooftop PV
Unit profile	Amul Fed Dairy is a large-scale dairy unit located at Gandhinagar, Gujarat. The various products manufactured in AFDG dairy are liquid milk, butter milk, flavored milk, lassi, ghee and ice cream with an average milk processing capacity of 32 lakh LPD

Project Name	Installation of 170 kWp solar PV system			
Installation Photo				
Assumptions Made	 Power cost – INR 7.87/kWh Daily running hours - 8 Annual operating days – 320 			
Savings (INR lakh)	₹20.60			
Investment (INR lakh)	₹76.50			
Simple Payback Period	25 years			
Replication potential	In all the dairy units irrespective of size and milk chilling centers			
Outcomes	 3.44 TOE of annual energy savings Better availability of power 			
Unit contact details	Mr. Prashant Seth Amul Fed Dairy Plot No 35, Gandhinagar Ahmedabad Road ,Bhat , Gujarat Phone: 07574802084 Email: prashant.sheth@amul.coop			
Cluster Reference	Gujarat Dairy Cluster			

Vendor Details

Table 76: Vendor Details – Solar PV

Equipment Detail	Solar PV System
Supplier Name	Varizone Solar Pvt. Ltd.
Address	Shop no. 2/3, Amrut Nagar, Hari Nagar-2, Opp. Swaminaryan Temple, Udhna, Surat
Contact Person	Mr. Parshwa Shah
Email Id	varizonesolar@gmail.com
Phone No	+91 9426111113

4.5.2 Solar Thermal System

Baseline Scenario

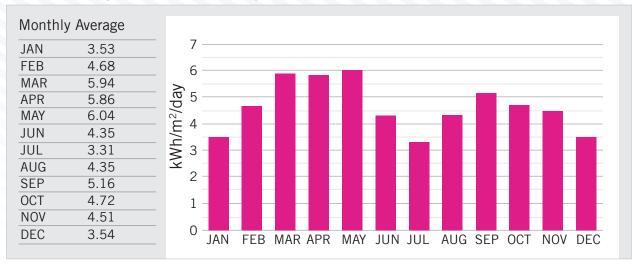
The unit has installed one FO-fired boiler for steam generation, which is used in process applications such as ghee, curd, ice cream section, etc. All the heating process in dairy is through indirect heating. The table below shows the details of the boiler installed in the plant:

Table 77: Boiler Details					
Boiler	Fuel Type	Design Capacity (TPH)	Operating Pressure (kg/cm²)	Operating Condition	Operating hrs
Boiler	FO Fired	1 TPH	9	Running	8

Currently, the temperature of feed water was observed to be 25°C, and there is no mechanism for preheating of feed water inside the plant. The average feed water requirement for the plant during normal running hours is 0.375 TPH and feed water is available at 25°C. The lower the temperature of feed water is, the higher is the fuel consumption inside the boiler to generate steam. For a conventional boiler, increasing the feed water temperature by 15°C will result in an increase in overall thermal efficiency of 3%. There is a good potential to install solar thermal inside the plant to harness solar energy and generate hot water. The site specifications are shown in the table below:

Table 78: Site specifications

Parameters	
Total area available	6oo sqm
Location	Latitude: - 30.35° N, Longitude: - 76.75° E
Altitude above sea level, m	264 m
Direct Normal Irradiance	4.66 kWh/m²/day
Wind	2.22 m/sec
Humidity	70%
Pressure	1015 hPa


Proposed System

It is recommended to install 3.5 KL solar thermal system with evacuated tube technology for supplying hot water at 65°C to preheat boiler feed water. Convention solar thermal system consisting of flat plate collectors have the surface area flat, and as a result, maximum efficiency occurs when the sun is directly overhead at midday. At other times, the sun's rays are striking the collector at varying angles, bouncing off the glazing material, thereby reducing their efficiency.

The evacuated tube collector mainly comprises of double glass-walled long evacuated tubes in which the outer surface of the inner tube is coated with a Selective Absorber Coating for solar heat collection. These glass tubes are cylindrical in shape. Therefore, the angle of the sunlight is always perpendicular to the heat absorbing tubes which enables these collectors to perform well even when sunlight is low, such as when it is early in the morning or late in the afternoon, or when shaded by clouds.

Ambala, Haryana Latitude: 30.35 Longitude: 76.75 Annual Average : 4.66 kWh/m²/day

Figure 48: Average Solar Irradiance

Air is removed, or evacuated, from the space between the two tubes to form a vacuum, which eliminates conductive, convective and radiation heat losses. The heat transfer fluid is systematically circulated into the inner tubes where it absorbs the heat from the selective coating – which in turn is continuously heated by the available solar radiation. ETC type is a more efficient solar heat collector (conversion efficiency of over 90%).

Figure 49: Evacuated Tube

Unlike flat panel collectors, evacuated tube collectors do not heat the water directly within the tubes. Instead, air is removed or evacuated from the space between the two tubes, forming a vacuum (hence the name evacuated tubes). This vacuum acts as an insulator reducing any heat loss significantly to the surrounding atmosphere either through convection or radiation making the collector much more efficient than the internal insulating that flat plate collectors have to offer. With the assistance of this vacuum, evacuated tube collectors generally produce higher fluid temperatures than their flat plate counterparts, so it may become very hot in summer.

The ETC type collector module is designed with an industrial-grade manifold header type consisting of 30 to 80 tubes. The average rated output of each module is 1 kW for every 12 ETC tubes of 58 mm dia x 1,800 mm length. The average rated output of each module is 1 kW for every 12 ETC tubes of 58 mm dia x 1,800 mm length.

Features of Solar Thermal System

1. Solar thermal Modules

- a. ETC type Solar Thermal Modules.
- b. ETC Glass tubes: 1,800 mm length, OD: 58mm, ID: 48 mm
- c. Total weight of module including structure and filled-water = Approx. 40 kg/ m^2 .
- d. End Connection: Both ends of each manifold equipped with flanged end.
- 2. Module structural Supports Made of MS L-angle, hot dip galvanized. (Suited for rooftop mounting).
- **3.** Interconnecting pipes between modules GI; Insulated with 50 mm thick rockwool, and aluminum cladded.
- **4. Area required** Area required for the solar thermal modules: Approx. 4 m²/kW shade-free rooftop area is required for modules, including inter-spaces.
- **5.** Rooftop Load The distributed load of the ETC Type module and structure will be a maximum of 35 kg/m².

Desired water quality for a long running life of the system:

Parameter	Unit	Specifications
Colour		Colourless
Odour		Unobjectionable
Turbidity	NTU	5
рН		6.5 to 8.5
Total Dissolved Solids	mg/l	50
Total Alkalinity	mg/l	20
Total Hardness	mg/l	30
Calcium	mg/l	7.5
Magnesium	mg/l	3
Chloride	mg/l	25
Sulphate	mg/l	20
Iron	mg/l	0.003

Table 79: Water Quality Requirement for Solar Thermal

Parameter	Unit	Specifications
Nitrate	mg/l	4.5
Fluoride	mg/l	1

<u>Merits</u>

- Reduced dependence on fossil fuels.
- Solar thermal energy does not cause pollution.
- Technology development in solar power industry is constantly advancing, which can result in lower installation costs in the future.

Limitations

- The initial cost of purchasing a solar thermal system is high.
- Although solar energy can be collected during cloudy and rainy days, the efficiency of the system drops, which results in lesser generation of energy.
- The area required for installing for large PV system can take up a lot of space.

Cost Benefit Analysis

The expected fuel savings by installation of solar thermal is 4,922 litres of FO annually. The annual monetary saving for this project is **INR 2.21 lakh, with an investment of INR 6.89 lakh, and a payback period of 3.1 years**.

Parameters	UOM	
Hot water requirement	LPD	3,000
Total boiler operational hours	hrs	8
Temperature required	°C	65
Cost of Furnace Oil	INR/L	45
Boiler Capacity	TPH	1
Boiler Efficiency	%	75
GCV of fuel	kCal/kg	39,580
Hot water requirement per day	LPD	3,000
Feed water temperature	°C	25
Heat loss in pipeline	%	15%
Heat energy required to raise the temperature including losses	kCal	5,77,392

Parameters	UOM	
Heat energy required to raise the temperature including losses	kW	160.47
Effective sun shine hours	kW	6.00
Heat Energy to be produced per effective hour	kW	27
Selected System Capacity	kW	36
Shadow free roof area required	m²	144
Fuel saved per day	litres/day	16.41
No of operating days	days	300
Annual fuel savings	litres	4,922
Annual Cost Savings	INR lakh	2.21
nvestment	INR lakh	6.88
Payback	years	3.1
RR	%	48.24
NPV at 70% debt (at 12% rate)	INR lakh	8.07

Energy & GHG Savings

Technology Compendium - Haryana Dairy Cluster

Vendor Details

Table 81: Vendor Details – Solar Thermal Systems

Equipment Detail	Solar Thermal System
Supplier Name	Aspiration Energy
Address	Aspiration Energy Pvt ltd Mandaveli, Chennai - 600028
Contact Person	Mr. Logesh N
Email Id	logesh@aspirationenergy.com
Phone No	+91 9840409624

4.5.3 Solar-Wind Hybrid system

Baseline Scenario

The unit is purchasing electricity from grid for the electrical energy requirement. The contract demand of the plant is 450 kVA, with an electricity price of INR 6.5/kWh, and average operating load is 260 kW to 300 kW.

Renewable energy is deemed to be the best substitute for conventional fossil fuel. Implementation of renewable energy posts various challenges, such as capital cost and consistency of power output, of which the latter can be solved by the installation of a Solar – Wind hybrid system. The plant has enough rooftop area which can be utilized to install a solarwind hybrid system that can harness solar energy and wind energy to generate electricity.

Proposed System

The Solar – Wind Hybrid system is also known as solar mill. The solar mill generates:

- Daytime energy from the sun and wind.
- Day & night energy from the wind energy.
- Energy even on cloudy days.
- More energy on hot sunny days due to cooling effect on solar panels by wind.

Figure 50: Solar wind hybrid system

It consists of three vertical axis wind turbines coupled to three permanent magnet generators. Automatic mechanical braking is provided once the wind speed goes beyond the cut-off speed. On board smart electronics include dynamic Maximum Power Point Tracking (MPPT). It uses wind and solar resources on a 24/7/365 basis, allowing access to energy and very little interruption of services. The design life of solar mill is 25 years.

Specifications

increase The of renewable power per square foot of roof is obtained by combining two power sources. For a rooftop installation, combining solar and wind power is a complementary combination. For example, many locations are less windy in the middle of the day when the sun is at its peak, and the wind picks up after dusk. Other advantages are solar module providing protection for the wind portions of the mechanism from direct rain and hail, and assisting with the direction of air into the turbines.

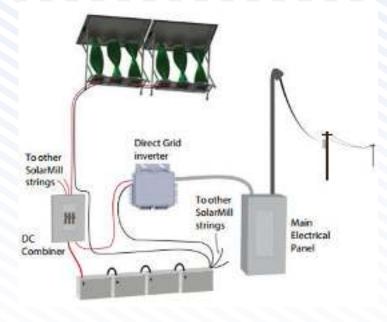


Figure 51: Hybrid mill connected to supply

Since this compact installation is designed for rooftops and urban atmosphere, savonious type of wind turbine is chosen for its low running speed and relative insensitivity to turbulence. Power generation begins at a wind speed of 5 kmph. Independent MPPT for both wind and solar is calibrated. Maximum power point tracking (MPPT) is an algorithm included in charge controllers used for extracting maximum available power. The power from both wind and solar generation is routed into a common 48V DC bus which has built-in charge control for a lead acid battery bank.

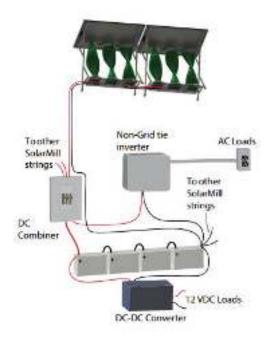


Figure 52: Hybrid mill connected to loads

Modes of Use

In grid tied system, the bank of batteries is connected to one or more Direct Grid micro-inverters, which connect to the user's electrical panel. The inverters push power back to the grid efficiently when the batteries become fully charged.

In off grid storage, the batteries can be used to supply power to electrical devices in off grid settings. This electrical energy can power DC powered devices through a voltage converter, or can power AC devices through an inverter.

Merits

- Power generation during daytime as well as nighttime.
- Reliable power generation even on cloudy days.
- A compact hybrid solar mill to meet a portion of the plant's load after detailed study with vendors.
- Power generation starts at 2-5 m/s and mechanical braking occur beyond 18 m/s.
- The power generation can be monitored online.

Limitations

Higher investment.

Cost Benefit Analysis

The expected savings in electrical energy to be achieved by installation of a 50 kWp Solar -Wind hybrid system is 1,32,000 units annually. The annual monetary saving for this project is **INR 8.60 lakh, with an investment of INR 45.00 lakh, and a payback period of 63 months**.

Table 82: Cost Benefit Analysis – Solar Wind Hybrid Systems

Parameters	UOM	
Installed Capacity of Solar wind Mill	kWp	50
Average generation per day per kWp	kWh	6.0
Area Required	m²	60
Annual operating days	Days	365
Electricity Tariff	INR/kWh	6.5
Average Annual Energy Saving on conservative basis	kWh	1,09,500
Annual cost savings	INR lakh	7.11
Investment	INR lakh	50
Simple Payback Period	Years	7
NPV at 70% Debt (12% rate)	INR lakh	13.15
IRR (%)	%	20.88

Energy & GHG Savings

Vendor Details

Table 83: Vendor Details – Solar-Wind Hybrid Systems

Equipment Detail	Solar - wind hybrid system
Supplier Name	Windstream Technologies
Address	G2-SSH Pride, Plot 273, Road No-78, Jubilee Hills, Hyderabad 500096
Contact Person	Mr. Bhaskar Sriram
Email Id	bhaskars@windstream-inc.com
Phone No	+91 99599 18782

5. Conclusion

In a typical dairy plant, heating and cooling operations are dominant energy users. Due to the wide variation in product mix among the dairy units, overall energy and specific energy consumption indicators vary significantly from plant to plant, making it extremely difficult to compare for performance or for identifying efficiency improvement opportunities. Other reasons for such wide variation also include level of technology adopted, vintage of these facilities, capacity utilization and fuel mix used in their operations. Significant energy efficiency improvement opportunities in dairy units exist in heating and cooling applications via adoption of co-generation technology, de-superheaters, evaporative cooling systems, utilization of renewable energy; biomass fired boilers and increased automation. Through this compendium some of the key technologies that are highly replicable in the cluster has been identified and for these technologies the case examples are included.

The identified technologies can be categorized into three heads namely, Level 1, Level 2, Level 3 based on the investment requirement and payback:

Level 1: Low investment

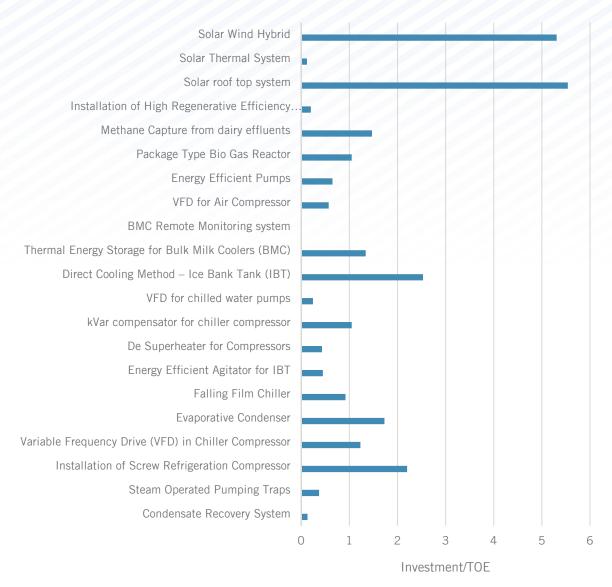
- ♦ Condensate recovery system
- Steam operated pumping traps
- ♦ VFD in chiller compressor
- ♦ Thermal energy storage for BMC
- ♦ VFD for air compressor
- ♦ Energy Efficient Pumps
- Desuperheater for chiller compressor
- ♦ Energy Efficient agitators
- ♦ VFD for chilled water pumps
- ♦ kVAr energy compensator

Level 2: Medium investment

- Installation of screw refrigeration compressor
- ♦ Evaporative condenser
- ♦ Package type bio reactor
- ♦ High Efficiency Pasteurizers

Level 3: High investment

- ♦ Direct cooling method IBT
- Methane capture from dairy effluents
- ♦ Solar rooftop system
- ♦ Solar thermal system
- \diamond Solar wind hybrid system
- ♦ BMC Monitoring system


Table 84:	Summary	of Energy	conservation	measures
-----------	---------	-----------	--------------	----------

Sr. No.	Technologies -	Ease of Implementation		Priority of activity (based on PB)				
		Easy	Moderate	Difficult	Short	Medium	Long	
Steam Generation and Distribution								
1	Condensate Recovery System		\checkmark		\checkmark			
2	Steam Operated Pumping Traps	\checkmark			\checkmark			
	Refrigeration Systems							
3	Installation of Screw Refrigeration Compressor		\checkmark				\checkmark	
4	VFD in Chiller Compressor	\checkmark				\checkmark		
5	Evaporative Condenser		\checkmark			\checkmark		
6	Falling Film Chiller		\checkmark			\checkmark		
7	Energy Efficient Agitator for IBT	\checkmark				\checkmark		
8	Desuperheater for Compressors	\checkmark					\checkmark	
9	kVAr compensator for chiller compressor	\checkmark			\checkmark			
10	VFD for chilled water pumps	\checkmark				\checkmark		
11	Direct Cooling Method – IBT			\checkmark			\checkmark	
12	Thermal Energy Storage for BMC	\checkmark			\checkmark			
13	BMC Remote Monitoring system		\checkmark				\checkmark	
		Utiliti	ies & Process					
14	VFD for Air Compressor	\checkmark			\checkmark			
15	Energy Efficient Pumps	\checkmark				\checkmark		
16	Package Type Biogas Reactor		\checkmark				\checkmark	
17	Methane Capture from dairy effluents			\checkmark			V	
18	Installation of high regenerative efficiency pasteurizer		\checkmark				\checkmark	
		Rene	wable Energy					
19	Solar rooftop system	\checkmark					\checkmark	
20	Solar Thermal System		\checkmark				\checkmark	
21	Solar-Wind Hybrid system	\checkmark					\checkmark	

With the efforts to the implementation of Energy Efficiency/Renewable energy projects through the case studies included in compendium indicates that there is a good potential for benefits – both low hanging and medium to high investments options. The dairies can implement the low

hanging fruits (with lesser investment) faster as with minimum or no investments the saving can be achieved. However, for the high investment, a detailed review in form of DPR can be prepared. The attractiveness of the project can also be assessed from the unit abatement cost (UAC). The UAC is defined as the cost/investment of reducing one unit of energy or pollution. The options having lower UAC are attractive to reduce a unit of energy consumption as the lesser investments are required to achieve the energy savings. Following graph highlights the comparison of Unit Abatement Cost - Investment (INR lakh) /Energy Savings achieved (TOE) for the major proposals identified at the Haryana Dairy cluster.

UAC: Investment (INR lakhs)/Energy Savings(TOE)

Figure 53: Unit Abatement Cost- Energy Efficient Technologies

The Haryana dairy industry should view this manual positively and utilise this opportunity to implement the best operating practices and energy saving ideas during design and operations stages and thus contributing in achieving world class energy efficiency standards for the cluster.

Bibliography

- DAHD, G. (2018). National Action Plan for Dairy Development Vision 2022. New Delhi: Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India.
- FAO. (2019, November 25). Retrieved from Gateway to dairy production and products: http:// www.fao.org/dairy-production-products/production/en/
- NDDB. (2004). Energy Management in Milk Powder Plants. India: National Dairy Development Board.
- NDDB. (2019, November 25). Milk Production in India. Retrieved from NDDB: https://www.nddb.coop/information/stats/milkprodindia
- Tetra Pak. (2019, November 29). https://www.tetrapak.com/processing/pasteurization/ tetra-pak-pasteurizer-d. Retrieved from https://www.tetrapak.com/processing/ pasteurization/tetra-pak-pasteurizer-d: https://www.tetrapak.com/processing/ pasteurization/tetra-pak-pasteurizer-d

For more details, please contact

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Vienna International Centre P.O. Box 300 · 1400 Vienna · Austria Tel.: (+43-1) 26026-0 ENE@unido.org www.unido.org

UNIDO Regional office in India UN House 55 - Lodi Estate, New Delhi-110 003, India office.india@unido.org

Bureau of Energy Efficiency

Government of India, Ministry of Power

4th Floor, Sewa Bhawan, R. K. Puram, New Delhi - 110 066 India Tel.: (+91) 011 2617 9699-0 gubpmu@beenet.in www.beeindia.gov.in